仅使用序列信息和同时使用序列和结构信息的蛋白质相互作用位点预测

Masanori Kakuta, Shugo Nakamura, K. Shimizu
{"title":"仅使用序列信息和同时使用序列和结构信息的蛋白质相互作用位点预测","authors":"Masanori Kakuta, Shugo Nakamura, K. Shimizu","doi":"10.2197/IPSJDC.4.217","DOIUrl":null,"url":null,"abstract":"Protein-protein interactions play an important role in a number of biological activities. We developed two methods of predictingprotein-protein interaction site residues. One method uses only sequence information and the other method uses both sequence and structural information. We used support vector machine (SVM) with a position specific scoring matrix (PSSM) as sequence information and accessible surface area(ASA) of polar and non-polar atoms as structural information. SVM is used in two stages. In the first stage, an interaction residue is predicted by taking PSSMs of sequentially neighboring residues or taking PSSMs and ASAs of spatially neighboring residues as features. The second stage acts as a filter to refine the prediction results. The recall and precision of the predictor using both sequence and structural information are 73.6% and 50.5%, respectively. We found that using PSSM instead of frequency of amino acid appearance was the main factor of improvement of our methods.","PeriodicalId":432390,"journal":{"name":"Ipsj Digital Courier","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Prediction of Protein-Protein Interaction Sites Using Only Sequence Information and Using Both Sequence and Structural Information\",\"authors\":\"Masanori Kakuta, Shugo Nakamura, K. Shimizu\",\"doi\":\"10.2197/IPSJDC.4.217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protein-protein interactions play an important role in a number of biological activities. We developed two methods of predictingprotein-protein interaction site residues. One method uses only sequence information and the other method uses both sequence and structural information. We used support vector machine (SVM) with a position specific scoring matrix (PSSM) as sequence information and accessible surface area(ASA) of polar and non-polar atoms as structural information. SVM is used in two stages. In the first stage, an interaction residue is predicted by taking PSSMs of sequentially neighboring residues or taking PSSMs and ASAs of spatially neighboring residues as features. The second stage acts as a filter to refine the prediction results. The recall and precision of the predictor using both sequence and structural information are 73.6% and 50.5%, respectively. We found that using PSSM instead of frequency of amino acid appearance was the main factor of improvement of our methods.\",\"PeriodicalId\":432390,\"journal\":{\"name\":\"Ipsj Digital Courier\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ipsj Digital Courier\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/IPSJDC.4.217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ipsj Digital Courier","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/IPSJDC.4.217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

蛋白质之间的相互作用在许多生物活动中起着重要作用。我们开发了两种预测蛋白质相互作用位点残基的方法。一种方法只使用序列信息,另一种方法同时使用序列和结构信息。我们使用具有位置特定评分矩阵(PSSM)的支持向量机(SVM)作为序列信息,并使用极性和非极性原子的可及表面积(ASA)作为结构信息。支持向量机的使用分为两个阶段。在第一阶段,通过取序列相邻残基的pssm或取空间相邻残基的pssm和asa作为特征来预测相互作用残基。第二阶段充当过滤器,以细化预测结果。同时使用序列和结构信息的预测器的召回率和精度分别为73.6%和50.5%。我们发现用PSSM代替氨基酸出现频率是我们改进方法的主要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of Protein-Protein Interaction Sites Using Only Sequence Information and Using Both Sequence and Structural Information
Protein-protein interactions play an important role in a number of biological activities. We developed two methods of predictingprotein-protein interaction site residues. One method uses only sequence information and the other method uses both sequence and structural information. We used support vector machine (SVM) with a position specific scoring matrix (PSSM) as sequence information and accessible surface area(ASA) of polar and non-polar atoms as structural information. SVM is used in two stages. In the first stage, an interaction residue is predicted by taking PSSMs of sequentially neighboring residues or taking PSSMs and ASAs of spatially neighboring residues as features. The second stage acts as a filter to refine the prediction results. The recall and precision of the predictor using both sequence and structural information are 73.6% and 50.5%, respectively. We found that using PSSM instead of frequency of amino acid appearance was the main factor of improvement of our methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Distributed-Processing System for Accelerating Biological Research Using Data-Staging A Type System for Dynamic Delimited Continuations A Combination Method of the Tanimoto Coefficient and Proximity Measure of Random Forest for Compound Activity Prediction Peer-to-Peer Multimedia Streaming with Guaranteed QoS for Future Real-time Applications A Benchmark Tool for Network I/O Management Architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1