基于互信息相似性指数的FDG PET图像阿尔茨海默病检测

E. Polat, A. Güvenis
{"title":"基于互信息相似性指数的FDG PET图像阿尔茨海默病检测","authors":"E. Polat, A. Güvenis","doi":"10.1109/TIPTEKNO50054.2020.9299268","DOIUrl":null,"url":null,"abstract":"Mutual information is an image similarity metric often used for the robust registration of multimodality images. The aim of this study is to investigate the use of a simple to implement similarity computation method based on a mutual information index for the automated detection of Alzheimer’s disease from FDG PET studies. 102 healthy and 95 Alzheimer’s disease FDG PET patient images from the online Alzheimer’s disease Neuroimaging Initiative (ADNI) database were used to develop and test the system. Images were preprocessed for enabling comparison. An index was computed for each new image based on its degree of similarity to images belonging to AD patients versus healthy control patients. Classification was made based on the value of this index. The leave-one-out method was used for performance evaluation. Performance was evaluated using Receiver Operating Characteristic (ROC) curves. The diagnostic reliability given by the area under the curve (AUC) was determined as $0.857\\pm 0.0261$. The results suggest that a mutual information based image similarity method can potentially be useful as a second opinion computer aided diagnostic (CAD) system providing verification to visual and black box approaches. The system does not need training with new data and does not require the computation of image features.","PeriodicalId":426945,"journal":{"name":"2020 Medical Technologies Congress (TIPTEKNO)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Alzheimer Disease on FDG PET Images Using a Similarity Index Based on Mutual Information\",\"authors\":\"E. Polat, A. Güvenis\",\"doi\":\"10.1109/TIPTEKNO50054.2020.9299268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mutual information is an image similarity metric often used for the robust registration of multimodality images. The aim of this study is to investigate the use of a simple to implement similarity computation method based on a mutual information index for the automated detection of Alzheimer’s disease from FDG PET studies. 102 healthy and 95 Alzheimer’s disease FDG PET patient images from the online Alzheimer’s disease Neuroimaging Initiative (ADNI) database were used to develop and test the system. Images were preprocessed for enabling comparison. An index was computed for each new image based on its degree of similarity to images belonging to AD patients versus healthy control patients. Classification was made based on the value of this index. The leave-one-out method was used for performance evaluation. Performance was evaluated using Receiver Operating Characteristic (ROC) curves. The diagnostic reliability given by the area under the curve (AUC) was determined as $0.857\\\\pm 0.0261$. The results suggest that a mutual information based image similarity method can potentially be useful as a second opinion computer aided diagnostic (CAD) system providing verification to visual and black box approaches. The system does not need training with new data and does not require the computation of image features.\",\"PeriodicalId\":426945,\"journal\":{\"name\":\"2020 Medical Technologies Congress (TIPTEKNO)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Medical Technologies Congress (TIPTEKNO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TIPTEKNO50054.2020.9299268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Medical Technologies Congress (TIPTEKNO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIPTEKNO50054.2020.9299268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

互信息是一种图像相似度度量,常用于多模态图像的鲁棒配准。本研究的目的是研究一种基于互信息索引的简单易行的相似性计算方法,用于FDG PET研究中阿尔茨海默病的自动检测。102名健康患者和95名阿尔茨海默病患者的FDG PET图像来自在线阿尔茨海默病神经影像学倡议(ADNI)数据库,用于开发和测试该系统。图像经过预处理,便于比较。根据每个新图像与AD患者与健康对照患者图像的相似程度计算一个指数。根据该指标的值进行分类。采用留一法进行性能评价。采用受试者工作特征(ROC)曲线评价疗效。曲线下面积(AUC)给出的诊断可靠性确定为0.857\pm 0.0261$。结果表明,基于互信息的图像相似度方法可以潜在地作为第二意见计算机辅助诊断(CAD)系统,为视觉和黑盒方法提供验证。该系统不需要使用新数据进行训练,也不需要计算图像特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting Alzheimer Disease on FDG PET Images Using a Similarity Index Based on Mutual Information
Mutual information is an image similarity metric often used for the robust registration of multimodality images. The aim of this study is to investigate the use of a simple to implement similarity computation method based on a mutual information index for the automated detection of Alzheimer’s disease from FDG PET studies. 102 healthy and 95 Alzheimer’s disease FDG PET patient images from the online Alzheimer’s disease Neuroimaging Initiative (ADNI) database were used to develop and test the system. Images were preprocessed for enabling comparison. An index was computed for each new image based on its degree of similarity to images belonging to AD patients versus healthy control patients. Classification was made based on the value of this index. The leave-one-out method was used for performance evaluation. Performance was evaluated using Receiver Operating Characteristic (ROC) curves. The diagnostic reliability given by the area under the curve (AUC) was determined as $0.857\pm 0.0261$. The results suggest that a mutual information based image similarity method can potentially be useful as a second opinion computer aided diagnostic (CAD) system providing verification to visual and black box approaches. The system does not need training with new data and does not require the computation of image features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiclass Classification of Brain Cancer with Machine Learning Algorithms Digital Filter Design Based on ARDUINO and Its Applications Use of Velocity Vectors for Cell Classification Under Acoustic Drifting Forces Development of a Full Face Mask during the COVID-19 Epidemic Spread Period TIPTEKNO 2020 Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1