基于颜色注意保留稀疏生成对象模型的视觉跟踪

Hong Zheng, Chunna Tian, Wei Wei
{"title":"基于颜色注意保留稀疏生成对象模型的视觉跟踪","authors":"Hong Zheng, Chunna Tian, Wei Wei","doi":"10.1109/ICOT.2014.6954662","DOIUrl":null,"url":null,"abstract":"A new color attention preserved sparse generative object model is proposed to handle occlusion and illumination variations in the visual tracking task. The color attention is represented by the fast calculated color descriptor on color names, which is used to weight the similarity measurement of the sparse generative model. In the sparse generative model, the image region of the object is divided into patches. And we take into consideration of the spatial information of each patch to handle the occlusion. The color attention assists the sparse generative model to match the spatial structure of the object and handle illumination variation and heavy occlusion on the object. The update scheme considers both the original template and the latest observations, which enables the tracker to deal with appearance change effectively and alleviate the drifting problem. Experiments on the several video databases under the influence of various factors demonstrate the efficiency of the proposed method.","PeriodicalId":343641,"journal":{"name":"2014 International Conference on Orange Technologies","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual tracking based on the color attention preserved sparse generative object model\",\"authors\":\"Hong Zheng, Chunna Tian, Wei Wei\",\"doi\":\"10.1109/ICOT.2014.6954662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new color attention preserved sparse generative object model is proposed to handle occlusion and illumination variations in the visual tracking task. The color attention is represented by the fast calculated color descriptor on color names, which is used to weight the similarity measurement of the sparse generative model. In the sparse generative model, the image region of the object is divided into patches. And we take into consideration of the spatial information of each patch to handle the occlusion. The color attention assists the sparse generative model to match the spatial structure of the object and handle illumination variation and heavy occlusion on the object. The update scheme considers both the original template and the latest observations, which enables the tracker to deal with appearance change effectively and alleviate the drifting problem. Experiments on the several video databases under the influence of various factors demonstrate the efficiency of the proposed method.\",\"PeriodicalId\":343641,\"journal\":{\"name\":\"2014 International Conference on Orange Technologies\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Orange Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOT.2014.6954662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Orange Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOT.2014.6954662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的保留颜色注意的稀疏生成目标模型,用于处理视觉跟踪任务中的遮挡和光照变化。颜色注意力由快速计算的颜色描述符表示,用于加权稀疏生成模型的相似度度量。在稀疏生成模型中,将目标的图像区域划分为小块。并且考虑每个patch的空间信息来处理遮挡。颜色注意有助于稀疏生成模型匹配物体的空间结构,并处理物体上的光照变化和严重遮挡。该更新方案同时考虑了原始模板和最新观测值,使跟踪器能够有效地处理外观变化,减轻漂移问题。在多种因素影响下对多个视频数据库进行的实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual tracking based on the color attention preserved sparse generative object model
A new color attention preserved sparse generative object model is proposed to handle occlusion and illumination variations in the visual tracking task. The color attention is represented by the fast calculated color descriptor on color names, which is used to weight the similarity measurement of the sparse generative model. In the sparse generative model, the image region of the object is divided into patches. And we take into consideration of the spatial information of each patch to handle the occlusion. The color attention assists the sparse generative model to match the spatial structure of the object and handle illumination variation and heavy occlusion on the object. The update scheme considers both the original template and the latest observations, which enables the tracker to deal with appearance change effectively and alleviate the drifting problem. Experiments on the several video databases under the influence of various factors demonstrate the efficiency of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An automatic speaker-speech recognition system for friendly HMI based on binary halved clustering A fuzzy clustering algorithm via enhanced spatially constraint for brain MR image segmentation A novel saliency detection framework for infrared thermal images A multistep liver segmentation strategy by combining level set based method with texture analysis for CT images An emotional feedback system based on a regulation process model for happiness improvement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1