{"title":"一个网络交通模型,控制自动驾驶汽车作为移动瓶颈","authors":"Zhexian Li, M. Levin, Raphael Stem, Xu Qu","doi":"10.1109/ITSC45102.2020.9294607","DOIUrl":null,"url":null,"abstract":"In this study, we develop a traffic model to simulate network traffic evolution under the impact of controlled autonomous vehicles acting as moving bottlenecks. We first extend the Newell-Daganzo method to track the trajectories of moving bottlenecks and calculate the cumulative number of vehicles passing moving bottlenecks. By integrating the solutions to the cumulative number of vehicles passing moving bottlenecks and link nodes as boundary conditions in the link-transmission models, we can incorporate the impact of moving bottlenecks into the flow of traffic at a network scale. The numerical simulation results demonstrate the effectiveness of the developed model to track trajectories of the moving bottlenecks and simulate their impact on freeway traffic.","PeriodicalId":394538,"journal":{"name":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A network traffic model with controlled autonomous vehicles acting as moving bottlenecks\",\"authors\":\"Zhexian Li, M. Levin, Raphael Stem, Xu Qu\",\"doi\":\"10.1109/ITSC45102.2020.9294607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we develop a traffic model to simulate network traffic evolution under the impact of controlled autonomous vehicles acting as moving bottlenecks. We first extend the Newell-Daganzo method to track the trajectories of moving bottlenecks and calculate the cumulative number of vehicles passing moving bottlenecks. By integrating the solutions to the cumulative number of vehicles passing moving bottlenecks and link nodes as boundary conditions in the link-transmission models, we can incorporate the impact of moving bottlenecks into the flow of traffic at a network scale. The numerical simulation results demonstrate the effectiveness of the developed model to track trajectories of the moving bottlenecks and simulate their impact on freeway traffic.\",\"PeriodicalId\":394538,\"journal\":{\"name\":\"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC45102.2020.9294607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC45102.2020.9294607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A network traffic model with controlled autonomous vehicles acting as moving bottlenecks
In this study, we develop a traffic model to simulate network traffic evolution under the impact of controlled autonomous vehicles acting as moving bottlenecks. We first extend the Newell-Daganzo method to track the trajectories of moving bottlenecks and calculate the cumulative number of vehicles passing moving bottlenecks. By integrating the solutions to the cumulative number of vehicles passing moving bottlenecks and link nodes as boundary conditions in the link-transmission models, we can incorporate the impact of moving bottlenecks into the flow of traffic at a network scale. The numerical simulation results demonstrate the effectiveness of the developed model to track trajectories of the moving bottlenecks and simulate their impact on freeway traffic.