利用超分辨率技术改善传感器网络中低分辨率图像的特征提取和配准效果

Wai Chong Chia, L. Yeong, S. I. Ch'ng, Yoke Lun Kam
{"title":"利用超分辨率技术改善传感器网络中低分辨率图像的特征提取和配准效果","authors":"Wai Chong Chia, L. Yeong, S. I. Ch'ng, Yoke Lun Kam","doi":"10.1109/SOCPAR.2015.7492770","DOIUrl":null,"url":null,"abstract":"In this paper, the effect of using multi-image and single-image super-resolution to reduce registration errors of low resolution images is evaluated. Two sets of low resolution images were captured using CMUCam4 to perform the evaluation. Moreover, a simplified method that make use of feature points extracted from resolution enhanced / upscaled images to improve the registration of low resolution images is also presented. The simulation results show that enhancing / upscaling the images in prior to registration does help to reduce the registration errors.","PeriodicalId":409493,"journal":{"name":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The effect of using super-resolution to improve feature extraction and registration of low resolution images in sensor networks\",\"authors\":\"Wai Chong Chia, L. Yeong, S. I. Ch'ng, Yoke Lun Kam\",\"doi\":\"10.1109/SOCPAR.2015.7492770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the effect of using multi-image and single-image super-resolution to reduce registration errors of low resolution images is evaluated. Two sets of low resolution images were captured using CMUCam4 to perform the evaluation. Moreover, a simplified method that make use of feature points extracted from resolution enhanced / upscaled images to improve the registration of low resolution images is also presented. The simulation results show that enhancing / upscaling the images in prior to registration does help to reduce the registration errors.\",\"PeriodicalId\":409493,\"journal\":{\"name\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCPAR.2015.7492770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2015.7492770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文评价了利用多图像和单图像超分辨率来降低低分辨率图像配准误差的效果。使用CMUCam4捕获两组低分辨率图像进行评估。此外,还提出了一种利用从分辨率增强/升级图像中提取的特征点来改善低分辨率图像配准的简化方法。仿真结果表明,在配准前对图像进行增强/上尺度处理有助于降低配准误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effect of using super-resolution to improve feature extraction and registration of low resolution images in sensor networks
In this paper, the effect of using multi-image and single-image super-resolution to reduce registration errors of low resolution images is evaluated. Two sets of low resolution images were captured using CMUCam4 to perform the evaluation. Moreover, a simplified method that make use of feature points extracted from resolution enhanced / upscaled images to improve the registration of low resolution images is also presented. The simulation results show that enhancing / upscaling the images in prior to registration does help to reduce the registration errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An effective AIS-based model for frequency assignment in mobile communication An innovative approach for feature selection based on chicken swarm optimization Vertical collaborative clustering using generative topographic maps Solving the obstacle neutralization problem using swarm intelligence algorithms Optimal partial filters of EEG signals for shared control of vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1