改进离散拉格朗日乘子搜索求解SAT难题的性能

Yi Shang, B. Wah
{"title":"改进离散拉格朗日乘子搜索求解SAT难题的性能","authors":"Yi Shang, B. Wah","doi":"10.1109/TAI.1998.744839","DOIUrl":null,"url":null,"abstract":"We have proposed the discrete Lagrange-multiplier method (DLM) to solve satisfiability problems. Instead of restarting from a new starting point when the search reaches a local minimum in the objective space, the Lagrange multipliers of violated constraints in DLM provide a force to lead the search out of the local minimum and move it in a direction provided by the multipliers. We present the theoretical foundation of DLM for solving SAT problems and discuss some implementation issues. We study the performance of DLM on a set of hard satisfiability benchmark instances, and show the importance of dynamic scaling of Lagrange multipliers and the flat-move strategy. We show that DLM can perform better than competing local-search methods when its parameters are selected properly.","PeriodicalId":424568,"journal":{"name":"Proceedings Tenth IEEE International Conference on Tools with Artificial Intelligence (Cat. No.98CH36294)","volume":"167 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Improving the performance of discrete Lagrange-multiplier search for solving hard SAT problems\",\"authors\":\"Yi Shang, B. Wah\",\"doi\":\"10.1109/TAI.1998.744839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have proposed the discrete Lagrange-multiplier method (DLM) to solve satisfiability problems. Instead of restarting from a new starting point when the search reaches a local minimum in the objective space, the Lagrange multipliers of violated constraints in DLM provide a force to lead the search out of the local minimum and move it in a direction provided by the multipliers. We present the theoretical foundation of DLM for solving SAT problems and discuss some implementation issues. We study the performance of DLM on a set of hard satisfiability benchmark instances, and show the importance of dynamic scaling of Lagrange multipliers and the flat-move strategy. We show that DLM can perform better than competing local-search methods when its parameters are selected properly.\",\"PeriodicalId\":424568,\"journal\":{\"name\":\"Proceedings Tenth IEEE International Conference on Tools with Artificial Intelligence (Cat. No.98CH36294)\",\"volume\":\"167 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Tenth IEEE International Conference on Tools with Artificial Intelligence (Cat. No.98CH36294)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1998.744839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Tenth IEEE International Conference on Tools with Artificial Intelligence (Cat. No.98CH36294)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1998.744839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们提出了离散拉格朗日乘子法(DLM)来解决可满足性问题。DLM中违反约束的拉格朗日乘子提供了一种力,将搜索从局部最小值引导到乘子提供的方向,而不是当搜索达到目标空间中的局部最小值时从新的起点重新开始。我们提出了解决SAT问题的DLM的理论基础,并讨论了一些实现问题。我们研究了DLM在一组硬满足性基准实例上的性能,并证明了拉格朗日乘子的动态缩放和平移策略的重要性。我们证明了当DLM的参数选择正确时,它可以比竞争的局部搜索方法执行得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the performance of discrete Lagrange-multiplier search for solving hard SAT problems
We have proposed the discrete Lagrange-multiplier method (DLM) to solve satisfiability problems. Instead of restarting from a new starting point when the search reaches a local minimum in the objective space, the Lagrange multipliers of violated constraints in DLM provide a force to lead the search out of the local minimum and move it in a direction provided by the multipliers. We present the theoretical foundation of DLM for solving SAT problems and discuss some implementation issues. We study the performance of DLM on a set of hard satisfiability benchmark instances, and show the importance of dynamic scaling of Lagrange multipliers and the flat-move strategy. We show that DLM can perform better than competing local-search methods when its parameters are selected properly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A hybrid case-based medical diagnosis system A weight analysis-based wrapper approach to neural nets feature subset selection Fragmentation problem and automated feature construction Combining cellular genetic algorithms and local search for solving satisfiability problems An artificial intelligence based tool for home automation using MATLAB
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1