基于流特征的人群恐慌行为检测方法

Yuefan Hao, Zhijie Xu, Jing Wang, Y. Liu, Jiu-lun Fan
{"title":"基于流特征的人群恐慌行为检测方法","authors":"Yuefan Hao, Zhijie Xu, Jing Wang, Y. Liu, Jiu-lun Fan","doi":"10.1109/IConAC.2016.7604963","DOIUrl":null,"url":null,"abstract":"With the purpose of achieving automated detection of crowd abnormal behavior in public, this paper discusses the category of typical crowd and individual behaviors and their patterns. Popular image features for abnormal behavior detection are also introduced, including global flow based features such as optical flow, and local spatio-temporal based features such as Spatio-temporal Volume (STV). After reviewing some relative abnormal behavior detection algorithms, a brand-new approach to detect crowd panic behavior has been proposed based on optical flow features in this paper. During the experiments, all panic behaviors are successfully detected. In the end, the future work to improve current approach has been discussed.","PeriodicalId":375052,"journal":{"name":"2016 22nd International Conference on Automation and Computing (ICAC)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An approach to detect crowd panic behavior using flow-based feature\",\"authors\":\"Yuefan Hao, Zhijie Xu, Jing Wang, Y. Liu, Jiu-lun Fan\",\"doi\":\"10.1109/IConAC.2016.7604963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the purpose of achieving automated detection of crowd abnormal behavior in public, this paper discusses the category of typical crowd and individual behaviors and their patterns. Popular image features for abnormal behavior detection are also introduced, including global flow based features such as optical flow, and local spatio-temporal based features such as Spatio-temporal Volume (STV). After reviewing some relative abnormal behavior detection algorithms, a brand-new approach to detect crowd panic behavior has been proposed based on optical flow features in this paper. During the experiments, all panic behaviors are successfully detected. In the end, the future work to improve current approach has been discussed.\",\"PeriodicalId\":375052,\"journal\":{\"name\":\"2016 22nd International Conference on Automation and Computing (ICAC)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 22nd International Conference on Automation and Computing (ICAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IConAC.2016.7604963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 22nd International Conference on Automation and Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IConAC.2016.7604963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

为了实现公共场合人群异常行为的自动检测,本文讨论了典型人群和个体行为的类别及其模式。本文还介绍了用于异常行为检测的常用图像特征,包括基于全局流的特征(如光流)和基于局部时空的特征(如时空体积)。本文在回顾了一些相关异常行为检测算法的基础上,提出了一种基于光流特征的人群恐慌行为检测新方法。在实验过程中,所有的恐慌行为都被成功检测到。最后,对今后改进现有方法的工作进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An approach to detect crowd panic behavior using flow-based feature
With the purpose of achieving automated detection of crowd abnormal behavior in public, this paper discusses the category of typical crowd and individual behaviors and their patterns. Popular image features for abnormal behavior detection are also introduced, including global flow based features such as optical flow, and local spatio-temporal based features such as Spatio-temporal Volume (STV). After reviewing some relative abnormal behavior detection algorithms, a brand-new approach to detect crowd panic behavior has been proposed based on optical flow features in this paper. During the experiments, all panic behaviors are successfully detected. In the end, the future work to improve current approach has been discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative study of Partial Discharge emulators for the calibration of Free-Space radiometric measurements Knowledge representation of large medical data using XML An investigation of electrical motor parameters in a sensorless variable speed drive for machine fault diagnosis A novel fault-tolerant control strategy for Near Space Hypersonic Vehicles via Least Squares Support Vector Machine and Backstepping method Automatic text summarization using fuzzy inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1