{"title":"TLB片——一种低成本的高速地址转换机制","authors":"G. Taylor, Peter Davies, M. Farmwald","doi":"10.1145/325164.325161","DOIUrl":null,"url":null,"abstract":"The MIPS R6000 microprocessor relies on a new type of translation lookaside buffer, called a TLB slice, which is less than one-tenth the size of a conventional TLB and as fast as one multiplexer delay, yet has a high enough hit rate to be practical. The fast translation makes it possible to use a physical cache without adding a translation stage to the processor's pipeline. The small size makes it possible to include address translation on-chip, even in a technology with a limited number of devices. The key idea behind the TLB slice is to have both a virtual tag and a physical tag on a physically indexed cache.<<ETX>>","PeriodicalId":297046,"journal":{"name":"[1990] Proceedings. The 17th Annual International Symposium on Computer Architecture","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"126","resultStr":"{\"title\":\"The TLB slice-a low-cost high-speed address translation mechanism\",\"authors\":\"G. Taylor, Peter Davies, M. Farmwald\",\"doi\":\"10.1145/325164.325161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The MIPS R6000 microprocessor relies on a new type of translation lookaside buffer, called a TLB slice, which is less than one-tenth the size of a conventional TLB and as fast as one multiplexer delay, yet has a high enough hit rate to be practical. The fast translation makes it possible to use a physical cache without adding a translation stage to the processor's pipeline. The small size makes it possible to include address translation on-chip, even in a technology with a limited number of devices. The key idea behind the TLB slice is to have both a virtual tag and a physical tag on a physically indexed cache.<<ETX>>\",\"PeriodicalId\":297046,\"journal\":{\"name\":\"[1990] Proceedings. The 17th Annual International Symposium on Computer Architecture\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"126\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1990] Proceedings. The 17th Annual International Symposium on Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/325164.325161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings. The 17th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/325164.325161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The TLB slice-a low-cost high-speed address translation mechanism
The MIPS R6000 microprocessor relies on a new type of translation lookaside buffer, called a TLB slice, which is less than one-tenth the size of a conventional TLB and as fast as one multiplexer delay, yet has a high enough hit rate to be practical. The fast translation makes it possible to use a physical cache without adding a translation stage to the processor's pipeline. The small size makes it possible to include address translation on-chip, even in a technology with a limited number of devices. The key idea behind the TLB slice is to have both a virtual tag and a physical tag on a physically indexed cache.<>