第一人称射击游戏中的层次控制器学习

N. V. Hoorn, J. Togelius, J. Schmidhuber
{"title":"第一人称射击游戏中的层次控制器学习","authors":"N. V. Hoorn, J. Togelius, J. Schmidhuber","doi":"10.1109/CIG.2009.5286463","DOIUrl":null,"url":null,"abstract":"We describe the architecture of a hierarchical learning-based controller for bots in the First-Person Shooter (FPS) game Unreal Tournament 2004. The controller is inspired by the subsumption architecture commonly used in behaviourbased robotics. A behaviour selector decides which of three sub-controllers gets to control the bot at each time step. Each controller is implemented as a recurrent neural network, and trained with artificial evolution to perform respectively combat, exploration and path following. The behaviour selector is trained with a multiobjective evolutionary algorithm to achieve an effective balancing of the lower-level behaviours. We argue that FPS games provide good environments for studying the learning of complex behaviours, and that the methods proposed here can help developing interesting opponents for games.","PeriodicalId":358795,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence and Games","volume":"50 Suppl 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"Hierarchical controller learning in a First-Person Shooter\",\"authors\":\"N. V. Hoorn, J. Togelius, J. Schmidhuber\",\"doi\":\"10.1109/CIG.2009.5286463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the architecture of a hierarchical learning-based controller for bots in the First-Person Shooter (FPS) game Unreal Tournament 2004. The controller is inspired by the subsumption architecture commonly used in behaviourbased robotics. A behaviour selector decides which of three sub-controllers gets to control the bot at each time step. Each controller is implemented as a recurrent neural network, and trained with artificial evolution to perform respectively combat, exploration and path following. The behaviour selector is trained with a multiobjective evolutionary algorithm to achieve an effective balancing of the lower-level behaviours. We argue that FPS games provide good environments for studying the learning of complex behaviours, and that the methods proposed here can help developing interesting opponents for games.\",\"PeriodicalId\":358795,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence and Games\",\"volume\":\"50 Suppl 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2009.5286463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2009.5286463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

摘要

我们描述了第一人称射击游戏《虚幻竞技场2004》中基于分层学习的机器人控制器的结构。控制器的灵感来自于基于行为的机器人中常用的包容架构。行为选择器决定三个子控制器中的哪一个在每个时间步控制机器人。每个控制器被实现为一个递归神经网络,并通过人工进化训练分别执行战斗、探索和路径跟踪。行为选择器采用多目标进化算法进行训练,以实现较低层次行为的有效平衡。我们认为,FPS游戏为研究复杂行为的学习提供了良好的环境,本文提出的方法有助于为游戏开发有趣的对手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical controller learning in a First-Person Shooter
We describe the architecture of a hierarchical learning-based controller for bots in the First-Person Shooter (FPS) game Unreal Tournament 2004. The controller is inspired by the subsumption architecture commonly used in behaviourbased robotics. A behaviour selector decides which of three sub-controllers gets to control the bot at each time step. Each controller is implemented as a recurrent neural network, and trained with artificial evolution to perform respectively combat, exploration and path following. The behaviour selector is trained with a multiobjective evolutionary algorithm to achieve an effective balancing of the lower-level behaviours. We argue that FPS games provide good environments for studying the learning of complex behaviours, and that the methods proposed here can help developing interesting opponents for games.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal strategy selection of non-player character on real time strategy game using a speciated evolutionary algorithm Formal analysis and algorithms for extracting coordinate systems of games Evolving driving controllers using Genetic Programming CHANCEPROBCUT: Forward pruning in chance nodes Evolving coordinated spatial tactics for autonomous entities using influence maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1