具有单个神经元的自组织地图

George M. Georgiou, K. Voigt
{"title":"具有单个神经元的自组织地图","authors":"George M. Georgiou, K. Voigt","doi":"10.1109/IJCNN.2013.6706843","DOIUrl":null,"url":null,"abstract":"Self-organization is explored with a single complex-valued quadratic neuron. The output is the complex plane. A virtual grid is used to provide desired outputs for each input. Experiments have shown that training is fast. A quadratic neuron with the new training algorithm has been shown to have clustering properties. Data that are in a cluster in the input space tend to cluster on the complex plane. The speed of training and operation allows for efficient high-dimensional data exploration and for real-time critical applications.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Self-organizing maps with a single neuron\",\"authors\":\"George M. Georgiou, K. Voigt\",\"doi\":\"10.1109/IJCNN.2013.6706843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-organization is explored with a single complex-valued quadratic neuron. The output is the complex plane. A virtual grid is used to provide desired outputs for each input. Experiments have shown that training is fast. A quadratic neuron with the new training algorithm has been shown to have clustering properties. Data that are in a cluster in the input space tend to cluster on the complex plane. The speed of training and operation allows for efficient high-dimensional data exploration and for real-time critical applications.\",\"PeriodicalId\":376975,\"journal\":{\"name\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2013.6706843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6706843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

研究了单个复值二次神经元的自组织问题。输出是复平面。虚拟网格用于为每个输入提供所需的输出。实验表明,训练是快速的。使用新训练算法的二次型神经元已被证明具有聚类特性。在输入空间中的聚类数据倾向于在复平面上聚类。训练和操作的速度允许高效的高维数据探索和实时关键应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-organizing maps with a single neuron
Self-organization is explored with a single complex-valued quadratic neuron. The output is the complex plane. A virtual grid is used to provide desired outputs for each input. Experiments have shown that training is fast. A quadratic neuron with the new training algorithm has been shown to have clustering properties. Data that are in a cluster in the input space tend to cluster on the complex plane. The speed of training and operation allows for efficient high-dimensional data exploration and for real-time critical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An SVM-based approach for stock market trend prediction Spiking neural networks for financial data prediction Improving multi-label classification performance by label constraints Biologically inspired intensity and range image feature extraction A location-independent direct link neuromorphic interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1