{"title":"具有单个神经元的自组织地图","authors":"George M. Georgiou, K. Voigt","doi":"10.1109/IJCNN.2013.6706843","DOIUrl":null,"url":null,"abstract":"Self-organization is explored with a single complex-valued quadratic neuron. The output is the complex plane. A virtual grid is used to provide desired outputs for each input. Experiments have shown that training is fast. A quadratic neuron with the new training algorithm has been shown to have clustering properties. Data that are in a cluster in the input space tend to cluster on the complex plane. The speed of training and operation allows for efficient high-dimensional data exploration and for real-time critical applications.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Self-organizing maps with a single neuron\",\"authors\":\"George M. Georgiou, K. Voigt\",\"doi\":\"10.1109/IJCNN.2013.6706843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-organization is explored with a single complex-valued quadratic neuron. The output is the complex plane. A virtual grid is used to provide desired outputs for each input. Experiments have shown that training is fast. A quadratic neuron with the new training algorithm has been shown to have clustering properties. Data that are in a cluster in the input space tend to cluster on the complex plane. The speed of training and operation allows for efficient high-dimensional data exploration and for real-time critical applications.\",\"PeriodicalId\":376975,\"journal\":{\"name\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2013.6706843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6706843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-organization is explored with a single complex-valued quadratic neuron. The output is the complex plane. A virtual grid is used to provide desired outputs for each input. Experiments have shown that training is fast. A quadratic neuron with the new training algorithm has been shown to have clustering properties. Data that are in a cluster in the input space tend to cluster on the complex plane. The speed of training and operation allows for efficient high-dimensional data exploration and for real-time critical applications.