{"title":"介绍深度学习","authors":"Francis Quintal Lauzon","doi":"10.1109/ISSPA.2012.6310529","DOIUrl":null,"url":null,"abstract":"Deep learning allows automatically learning multiple levels of representations of the underlying distribution of the data to be modeled. In this work, a specific implementation called stacked denoising autoencoders is explored. We contribute by demonstrating that this kind of representation coupled to a SVM improves classification error on MNIST over the usual deep learning approach where a logistic regression layer is added to the stack of denoising autoencoders.","PeriodicalId":248763,"journal":{"name":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","volume":"25 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"An introduction to deep learning\",\"authors\":\"Francis Quintal Lauzon\",\"doi\":\"10.1109/ISSPA.2012.6310529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning allows automatically learning multiple levels of representations of the underlying distribution of the data to be modeled. In this work, a specific implementation called stacked denoising autoencoders is explored. We contribute by demonstrating that this kind of representation coupled to a SVM improves classification error on MNIST over the usual deep learning approach where a logistic regression layer is added to the stack of denoising autoencoders.\",\"PeriodicalId\":248763,\"journal\":{\"name\":\"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)\",\"volume\":\"25 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.2012.6310529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2012.6310529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

深度学习允许自动学习要建模的数据底层分布的多层表示。在这项工作中,研究了一种称为堆叠去噪自动编码器的具体实现。我们的贡献是证明这种与支持向量机耦合的表示比通常的深度学习方法(在去噪自编码器堆栈中添加逻辑回归层)改善了MNIST上的分类误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An introduction to deep learning
Deep learning allows automatically learning multiple levels of representations of the underlying distribution of the data to be modeled. In this work, a specific implementation called stacked denoising autoencoders is explored. We contribute by demonstrating that this kind of representation coupled to a SVM improves classification error on MNIST over the usual deep learning approach where a logistic regression layer is added to the stack of denoising autoencoders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online mvbf adaptation under diffuse noise environments with mimo based noise pre-filtering Hierarchical scheme for Arabic text recognition Precoder selection and rank adaptation in MIMO-OFDM Head detection using Kinect camera and its application to fall detection Wavelength and code division multiplexing toward diffuse optical imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1