支链α -酮酸脱氢酶复合物E1亚基的分子缺陷导致枫糖浆尿病。

Molecular biology & medicine Pub Date : 1991-02-01
B Zhang, Y Zhao, R A Harris, D W Crabb
{"title":"支链α -酮酸脱氢酶复合物E1亚基的分子缺陷导致枫糖浆尿病。","authors":"B Zhang,&nbsp;Y Zhao,&nbsp;R A Harris,&nbsp;D W Crabb","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Maple syrup urine disease (MSUD) results from an inborn metabolic error caused by a deficiency of the branched-chain alpha-ketoacid dehydrogenase complex (BCKDC). cDNA clones encoding the E1 alpha subunit of BCKDC from rat and human liver have been isolated and characterized. The chromosomal location of E1 alpha on chromosome 19q13.1-13.2 has been determined using complementary methods. The etiology of MSUD has been studied by determining the enzyme activity, protein mass and mRNA level of BCKDC in fibroblasts from a human family and Polled Hereford calves, both with classic MSUD. A TACTyr to AACAsn substitution at residue 394 of the E1 alpha subunit was identified in the human patient by using enzymatic amplification of mRNA followed by DNA sequencing. Amplification of both mRNA and genomic DNA, in combination with allele-specific oligonucleotide hybridization, demonstrated that the patient was a compound heterozygote, inheriting an allele with a structural mutation from the father, and an allele from the mother containing a presumably cis-acting defect in regulation that abolished the expression of one of the E1 alpha alleles. The results revealed for the first time that a case of MSUD was caused by structural and regulatory mutations involving the E1 alpha subunit. Recent studies by others have demonstrated that the same structural mutation as is found in this patient is responsible for the high incidence of MSUD in the Philadelphia Mennonite population.(ABSTRACT TRUNCATED AT 250 WORDS)</p>","PeriodicalId":77573,"journal":{"name":"Molecular biology & medicine","volume":"8 1","pages":"39-47"},"PeriodicalIF":0.0000,"publicationDate":"1991-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular defects in the E1 alpha subunit of the branched-chain alpha-ketoacid dehydrogenase complex that cause maple syrup urine disease.\",\"authors\":\"B Zhang,&nbsp;Y Zhao,&nbsp;R A Harris,&nbsp;D W Crabb\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Maple syrup urine disease (MSUD) results from an inborn metabolic error caused by a deficiency of the branched-chain alpha-ketoacid dehydrogenase complex (BCKDC). cDNA clones encoding the E1 alpha subunit of BCKDC from rat and human liver have been isolated and characterized. The chromosomal location of E1 alpha on chromosome 19q13.1-13.2 has been determined using complementary methods. The etiology of MSUD has been studied by determining the enzyme activity, protein mass and mRNA level of BCKDC in fibroblasts from a human family and Polled Hereford calves, both with classic MSUD. A TACTyr to AACAsn substitution at residue 394 of the E1 alpha subunit was identified in the human patient by using enzymatic amplification of mRNA followed by DNA sequencing. Amplification of both mRNA and genomic DNA, in combination with allele-specific oligonucleotide hybridization, demonstrated that the patient was a compound heterozygote, inheriting an allele with a structural mutation from the father, and an allele from the mother containing a presumably cis-acting defect in regulation that abolished the expression of one of the E1 alpha alleles. The results revealed for the first time that a case of MSUD was caused by structural and regulatory mutations involving the E1 alpha subunit. Recent studies by others have demonstrated that the same structural mutation as is found in this patient is responsible for the high incidence of MSUD in the Philadelphia Mennonite population.(ABSTRACT TRUNCATED AT 250 WORDS)</p>\",\"PeriodicalId\":77573,\"journal\":{\"name\":\"Molecular biology & medicine\",\"volume\":\"8 1\",\"pages\":\"39-47\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular biology & medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology & medicine","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

枫糖浆尿病(MSUD)是由支链α -酮酸脱氢酶复合物(BCKDC)缺乏引起的先天性代谢错误引起的。从大鼠和人肝脏中分离并鉴定了编码BCKDC E1 α亚基的cDNA克隆。E1 α在染色体19q13.1-13.2上的染色体位置已经用互补方法确定。通过测定人类家族和赫里福德犊牛的成纤维细胞BCKDC的酶活性、蛋白质量和mRNA水平,研究了MSUD的病因。在人类患者中,通过酶促扩增mRNA和DNA测序,在E1 α亚基的394位残基上发现了一个TACTyr到AACAsn的替代。mRNA和基因组DNA的扩增,结合等位基因特异性寡核苷酸杂交,证明该患者是一个复合杂合子,遗传了父亲的一个具有结构突变的等位基因,以及母亲的一个可能含有顺式作用缺陷的调节等位基因,该缺陷消除了一个E1 α等位基因的表达。该结果首次揭示了MSUD是由E1 α亚基的结构和调控突变引起的。其他人最近的研究表明,在该患者中发现的相同结构突变是导致费城门诺派人群中MSUD高发的原因。(摘要删节250字)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular defects in the E1 alpha subunit of the branched-chain alpha-ketoacid dehydrogenase complex that cause maple syrup urine disease.

Maple syrup urine disease (MSUD) results from an inborn metabolic error caused by a deficiency of the branched-chain alpha-ketoacid dehydrogenase complex (BCKDC). cDNA clones encoding the E1 alpha subunit of BCKDC from rat and human liver have been isolated and characterized. The chromosomal location of E1 alpha on chromosome 19q13.1-13.2 has been determined using complementary methods. The etiology of MSUD has been studied by determining the enzyme activity, protein mass and mRNA level of BCKDC in fibroblasts from a human family and Polled Hereford calves, both with classic MSUD. A TACTyr to AACAsn substitution at residue 394 of the E1 alpha subunit was identified in the human patient by using enzymatic amplification of mRNA followed by DNA sequencing. Amplification of both mRNA and genomic DNA, in combination with allele-specific oligonucleotide hybridization, demonstrated that the patient was a compound heterozygote, inheriting an allele with a structural mutation from the father, and an allele from the mother containing a presumably cis-acting defect in regulation that abolished the expression of one of the E1 alpha alleles. The results revealed for the first time that a case of MSUD was caused by structural and regulatory mutations involving the E1 alpha subunit. Recent studies by others have demonstrated that the same structural mutation as is found in this patient is responsible for the high incidence of MSUD in the Philadelphia Mennonite population.(ABSTRACT TRUNCATED AT 250 WORDS)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interleukin 6 response factor binds co-operatively at two adjacent sites in the promoter upstream region of the rat alpha 2-macroglobulin gene. Sequence of rat alpha 1-macroglobulin, a broad-range proteinase inhibitor from the alpha-macroglobulin-complement family. Molecular biology of myogenic regulatory factors. Stress proteins and cardiovascular disease. Considerations affecting selection of thrombolytic agents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1