{"title":"二维热对流模拟的动态自适应晶格Boltzmann方法验证","authors":"Kai Feldhusen, R. Deiterding, C. Wagner","doi":"10.1109/MCSI.2015.60","DOIUrl":null,"url":null,"abstract":"Utilizing the Boussinesq approximation, a double-population thermal lattice Boltzmann method (LBM) for forced and natural convection in two space dimensions is developed and validated. A block-structured dynamic adaptive mesh refinement procedure tailored for LBM is applied to enable computationally efficient simulations of high Rayleigh number configurations which are characterized by a large scale disparity in boundary layers and free stream flow. As test cases, the analytically accessible problem of a two-dimensional (2D) forced convection flow through two porous plates and the non-Cartesian configuration of a heated rotating cylinder are considered. The effectiveness of the overall approach is demonstrated for the 2D natural convection benchmark of a cavity with differentially heated walls at Rayleigh numbers from 103 up to 108.","PeriodicalId":371635,"journal":{"name":"2015 Second International Conference on Mathematics and Computers in Sciences and in Industry (MCSI)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Validation of a Dynamically Adaptive Lattice Boltzmann Method for 2D Thermal Convection Simulations\",\"authors\":\"Kai Feldhusen, R. Deiterding, C. Wagner\",\"doi\":\"10.1109/MCSI.2015.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Utilizing the Boussinesq approximation, a double-population thermal lattice Boltzmann method (LBM) for forced and natural convection in two space dimensions is developed and validated. A block-structured dynamic adaptive mesh refinement procedure tailored for LBM is applied to enable computationally efficient simulations of high Rayleigh number configurations which are characterized by a large scale disparity in boundary layers and free stream flow. As test cases, the analytically accessible problem of a two-dimensional (2D) forced convection flow through two porous plates and the non-Cartesian configuration of a heated rotating cylinder are considered. The effectiveness of the overall approach is demonstrated for the 2D natural convection benchmark of a cavity with differentially heated walls at Rayleigh numbers from 103 up to 108.\",\"PeriodicalId\":371635,\"journal\":{\"name\":\"2015 Second International Conference on Mathematics and Computers in Sciences and in Industry (MCSI)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Second International Conference on Mathematics and Computers in Sciences and in Industry (MCSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCSI.2015.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Second International Conference on Mathematics and Computers in Sciences and in Industry (MCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSI.2015.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Validation of a Dynamically Adaptive Lattice Boltzmann Method for 2D Thermal Convection Simulations
Utilizing the Boussinesq approximation, a double-population thermal lattice Boltzmann method (LBM) for forced and natural convection in two space dimensions is developed and validated. A block-structured dynamic adaptive mesh refinement procedure tailored for LBM is applied to enable computationally efficient simulations of high Rayleigh number configurations which are characterized by a large scale disparity in boundary layers and free stream flow. As test cases, the analytically accessible problem of a two-dimensional (2D) forced convection flow through two porous plates and the non-Cartesian configuration of a heated rotating cylinder are considered. The effectiveness of the overall approach is demonstrated for the 2D natural convection benchmark of a cavity with differentially heated walls at Rayleigh numbers from 103 up to 108.