人工神经网络在显微图像微泡自动测量中的应用

Baoning Pan, K. Abdelhamied
{"title":"人工神经网络在显微图像微泡自动测量中的应用","authors":"Baoning Pan, K. Abdelhamied","doi":"10.1109/CBMS.1992.244957","DOIUrl":null,"url":null,"abstract":"A novel approach for quantitative segmentation and measurement of oxygen microbubbles in microscopic images is presented. In this approach, ellipse-based models were first built using moment parameters as rough approximations of oxygen microbubbles. Artificial neural networks were then developed and trained for segmentation refinement. The results show that the proposed approach achieved high accuracy of microbubbles measurement with less than 8% measurement error.<<ETX>>","PeriodicalId":197891,"journal":{"name":"[1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems","volume":"77 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of artificial neural networks for automatic measurement of micro-bubbles in microscopic images\",\"authors\":\"Baoning Pan, K. Abdelhamied\",\"doi\":\"10.1109/CBMS.1992.244957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel approach for quantitative segmentation and measurement of oxygen microbubbles in microscopic images is presented. In this approach, ellipse-based models were first built using moment parameters as rough approximations of oxygen microbubbles. Artificial neural networks were then developed and trained for segmentation refinement. The results show that the proposed approach achieved high accuracy of microbubbles measurement with less than 8% measurement error.<<ETX>>\",\"PeriodicalId\":197891,\"journal\":{\"name\":\"[1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems\",\"volume\":\"77 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.1992.244957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.1992.244957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种新的显微图像中氧微泡的定量分割和测量方法。在这种方法中,首先建立基于椭圆的模型,使用力矩参数作为氧微泡的粗略近似。然后开发并训练人工神经网络进行分割细化。结果表明,该方法测量精度高,测量误差小于8%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of artificial neural networks for automatic measurement of micro-bubbles in microscopic images
A novel approach for quantitative segmentation and measurement of oxygen microbubbles in microscopic images is presented. In this approach, ellipse-based models were first built using moment parameters as rough approximations of oxygen microbubbles. Artificial neural networks were then developed and trained for segmentation refinement. The results show that the proposed approach achieved high accuracy of microbubbles measurement with less than 8% measurement error.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Local motion identification and correction schemes for ultrafast CT flow studies Graphical user interface system for automatic 3-D medical image analysis GAMEES II: an environment for building probabilistic expert systems based on arrays of Bayesian belief networks A methodology for the validation of image segmentation methods Shape analysis of mammographic calcifications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1