皮肤黑色素瘤评估ABCD规则实施研究

V. Rajinikanth, N. Sri Madhava Raja, S. Arunmozhi
{"title":"皮肤黑色素瘤评估ABCD规则实施研究","authors":"V. Rajinikanth, N. Sri Madhava Raja, S. Arunmozhi","doi":"10.1109/ICSCAN.2019.8878860","DOIUrl":null,"url":null,"abstract":"Examination of the Skin-Melanoma (SM) is an essential practice to verify and authenticate the phase of the cancer in skin fragment. If the cancer phase, such as the Benign/Malignant is recognized through the screening process, a possible treatment procedure can be implemented to cure the patient. This work employs a soft-computing assisted procedure to threshold and segment the SM to identify the phase. The thresholding is executed with the Bat Algorithm (BA) and Otsu’s thresholding and the extraction is employed with the Watershed scheme. After extracting the SM slice, a relative study is applied to find the similarity level among the ground-truth and the SM to validate the performance. Further, the ABCD rule is also applied to identify the crucial SM parameters, such as Asymmetry (A), Border abnormality (B) and Diameter (D) to classify the considered SM images into Benign/Malignant. The outcome of this work confirms that, implemented practice works well on the chosen SM images.","PeriodicalId":363880,"journal":{"name":"2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"ABCD Rule Implementation for the Skin Melanoma Assesment – A Study\",\"authors\":\"V. Rajinikanth, N. Sri Madhava Raja, S. Arunmozhi\",\"doi\":\"10.1109/ICSCAN.2019.8878860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Examination of the Skin-Melanoma (SM) is an essential practice to verify and authenticate the phase of the cancer in skin fragment. If the cancer phase, such as the Benign/Malignant is recognized through the screening process, a possible treatment procedure can be implemented to cure the patient. This work employs a soft-computing assisted procedure to threshold and segment the SM to identify the phase. The thresholding is executed with the Bat Algorithm (BA) and Otsu’s thresholding and the extraction is employed with the Watershed scheme. After extracting the SM slice, a relative study is applied to find the similarity level among the ground-truth and the SM to validate the performance. Further, the ABCD rule is also applied to identify the crucial SM parameters, such as Asymmetry (A), Border abnormality (B) and Diameter (D) to classify the considered SM images into Benign/Malignant. The outcome of this work confirms that, implemented practice works well on the chosen SM images.\",\"PeriodicalId\":363880,\"journal\":{\"name\":\"2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCAN.2019.8878860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCAN.2019.8878860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

皮肤黑色素瘤(SM)的检查是验证和鉴定皮肤碎片中癌症的阶段的基本做法。如果通过筛查过程识别出癌症阶段,如良性/恶性,就可以实施可能的治疗程序来治愈患者。本工作采用软计算辅助程序对SM进行阈值和分割以识别相位。阈值分割采用Bat算法和Otsu阈值分割,提取采用Watershed算法。在提取出SM切片后,通过相对研究来寻找ground-truth与SM之间的相似程度,以验证其性能。此外,ABCD规则还用于识别SM的关键参数,如不对称(A),边界异常(B)和直径(D),将考虑的SM图像分类为良性/恶性。本工作的结果证实,所实施的实践在选定的SM图像上效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ABCD Rule Implementation for the Skin Melanoma Assesment – A Study
Examination of the Skin-Melanoma (SM) is an essential practice to verify and authenticate the phase of the cancer in skin fragment. If the cancer phase, such as the Benign/Malignant is recognized through the screening process, a possible treatment procedure can be implemented to cure the patient. This work employs a soft-computing assisted procedure to threshold and segment the SM to identify the phase. The thresholding is executed with the Bat Algorithm (BA) and Otsu’s thresholding and the extraction is employed with the Watershed scheme. After extracting the SM slice, a relative study is applied to find the similarity level among the ground-truth and the SM to validate the performance. Further, the ABCD rule is also applied to identify the crucial SM parameters, such as Asymmetry (A), Border abnormality (B) and Diameter (D) to classify the considered SM images into Benign/Malignant. The outcome of this work confirms that, implemented practice works well on the chosen SM images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Security Analytics For Heterogeneous Web Pipeline Gas Leakage Detection And Location Identification System IoT Enabled Forest Fire Detection and Early Warning System Research opportunities on virtual reality and augmented reality: a survey Performance Analysis of Hub BLDC Motor Using Finite Element Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1