基于高斯混合隐马尔可夫模型的语音识别系统研究

Zied Ben Hazem, Youssef Zouhir, K. Ouni
{"title":"基于高斯混合隐马尔可夫模型的语音识别系统研究","authors":"Zied Ben Hazem, Youssef Zouhir, K. Ouni","doi":"10.1109/CISTEM.2014.7076916","DOIUrl":null,"url":null,"abstract":"In this paper, we present a study of isolated word speech recognition system. The adopted system is based on the Hidden Markov Model with Gaussian Mixture (HMM-GM). We studied the recognition rate by varying the states number (3, 4, 5, 6 and 7 states) and the number of Gaussians per state (2, 4, 8, 12, 14 and 16 Gaussians) of Hidden Markov Model. We evaluated these recognition rates using two parameterization techniques Mel Frequency Cepstral Coefficients (MFCC) and Perceptual Linear Prediction (PLP). We have introduced the dynamic coefficients and the energy of the signal in order to achieve an improvement in the recognition rate.","PeriodicalId":115632,"journal":{"name":"2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A study of speech recognition system based on the Hidden Markov Model with Gaussian-Mixture\",\"authors\":\"Zied Ben Hazem, Youssef Zouhir, K. Ouni\",\"doi\":\"10.1109/CISTEM.2014.7076916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a study of isolated word speech recognition system. The adopted system is based on the Hidden Markov Model with Gaussian Mixture (HMM-GM). We studied the recognition rate by varying the states number (3, 4, 5, 6 and 7 states) and the number of Gaussians per state (2, 4, 8, 12, 14 and 16 Gaussians) of Hidden Markov Model. We evaluated these recognition rates using two parameterization techniques Mel Frequency Cepstral Coefficients (MFCC) and Perceptual Linear Prediction (PLP). We have introduced the dynamic coefficients and the energy of the signal in order to achieve an improvement in the recognition rate.\",\"PeriodicalId\":115632,\"journal\":{\"name\":\"2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISTEM.2014.7076916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISTEM.2014.7076916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了一种孤立词语音识别系统。所采用的系统基于高斯混合隐马尔可夫模型(HMM-GM)。通过改变隐马尔可夫模型的状态数(3、4、5、6、7)和每个状态的高斯数(2、4、8、12、14、16)来研究识别率。我们使用两种参数化技术-频率倒谱系数(MFCC)和感知线性预测(PLP)来评估这些识别率。为了提高识别率,我们引入了信号的动态系数和能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A study of speech recognition system based on the Hidden Markov Model with Gaussian-Mixture
In this paper, we present a study of isolated word speech recognition system. The adopted system is based on the Hidden Markov Model with Gaussian Mixture (HMM-GM). We studied the recognition rate by varying the states number (3, 4, 5, 6 and 7 states) and the number of Gaussians per state (2, 4, 8, 12, 14 and 16 Gaussians) of Hidden Markov Model. We evaluated these recognition rates using two parameterization techniques Mel Frequency Cepstral Coefficients (MFCC) and Perceptual Linear Prediction (PLP). We have introduced the dynamic coefficients and the energy of the signal in order to achieve an improvement in the recognition rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive hysteresis controller for the Switched Reluctance Machines Critical current density determination of superconducting material Induction machine finite element model for field-oriented control in Electric vehicle power train Solar radiation forecasting using artificial neural network for local power reserve Modeling of a radial flux PM rotating machine using a new hybrid analytical model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1