基于FPGA的序列对齐优化:以扩展序列对齐为例(仅摘要)

Zheming Jin, Kazutomo Yoshii
{"title":"基于FPGA的序列对齐优化:以扩展序列对齐为例(仅摘要)","authors":"Zheming Jin, Kazutomo Yoshii","doi":"10.1145/3174243.3174958","DOIUrl":null,"url":null,"abstract":"Detecting similarities between sequences is an important part of Bioinformatics. In this poster, we explore the use of high-level synthesis tool and a field-programmable gate array (FPGA) for optimizing a sequence alignment algorithm. We demonstrate the optimization techniques to improve the performance of the extended sequence alignment algorithm in the BWA software package, a tool for mapping DNA sequences against a large reference sequence. Applying the optimizations to the algorithm using Xilinx SDAccel OpenCL-to-FPGA tool, we reduce the kernel execution time from 62.8 ms to 0.45 ms while the power consumption is approximately 11 Watts on the ADM-PCIE-8K5 FPGA platform.","PeriodicalId":164936,"journal":{"name":"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizations of Sequence Alignment on FPGA: A Case Study of Extended Sequence Alignment (Abstact Only)\",\"authors\":\"Zheming Jin, Kazutomo Yoshii\",\"doi\":\"10.1145/3174243.3174958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting similarities between sequences is an important part of Bioinformatics. In this poster, we explore the use of high-level synthesis tool and a field-programmable gate array (FPGA) for optimizing a sequence alignment algorithm. We demonstrate the optimization techniques to improve the performance of the extended sequence alignment algorithm in the BWA software package, a tool for mapping DNA sequences against a large reference sequence. Applying the optimizations to the algorithm using Xilinx SDAccel OpenCL-to-FPGA tool, we reduce the kernel execution time from 62.8 ms to 0.45 ms while the power consumption is approximately 11 Watts on the ADM-PCIE-8K5 FPGA platform.\",\"PeriodicalId\":164936,\"journal\":{\"name\":\"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3174243.3174958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3174243.3174958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

序列间相似性检测是生物信息学的重要组成部分。在这张海报中,我们探索了使用高级合成工具和现场可编程门阵列(FPGA)来优化序列对齐算法。我们演示了优化技术,以提高BWA软件包中的扩展序列比对算法的性能,BWA软件包是一个针对大型参考序列进行DNA序列比对的工具。使用Xilinx SDAccel OpenCL-to-FPGA工具对算法进行优化,我们将内核执行时间从62.8 ms减少到0.45 ms,而在ADM-PCIE-8K5 FPGA平台上功耗约为11瓦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizations of Sequence Alignment on FPGA: A Case Study of Extended Sequence Alignment (Abstact Only)
Detecting similarities between sequences is an important part of Bioinformatics. In this poster, we explore the use of high-level synthesis tool and a field-programmable gate array (FPGA) for optimizing a sequence alignment algorithm. We demonstrate the optimization techniques to improve the performance of the extended sequence alignment algorithm in the BWA software package, a tool for mapping DNA sequences against a large reference sequence. Applying the optimizations to the algorithm using Xilinx SDAccel OpenCL-to-FPGA tool, we reduce the kernel execution time from 62.8 ms to 0.45 ms while the power consumption is approximately 11 Watts on the ADM-PCIE-8K5 FPGA platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Architecture and Circuit Design of an All-Spintronic FPGA Session details: Session 6: High Level Synthesis 2 A FPGA Friendly Approximate Computing Framework with Hybrid Neural Networks: (Abstract Only) Software/Hardware Co-design for Multichannel Scheduling in IEEE 802.11p MLME: (Abstract Only) Session details: Special Session: Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1