非线性判别主成分分析在图像分类与重建中的应用

T. Filisbino, G. Giraldi, C. Thomaz
{"title":"非线性判别主成分分析在图像分类与重建中的应用","authors":"T. Filisbino, G. Giraldi, C. Thomaz","doi":"10.1109/BRACIS.2018.00061","DOIUrl":null,"url":null,"abstract":"In this paper we present a nonlinear version of the discriminant principal component analysis, named NDPCA, that is based on kernel support vector machines (KSVM) and the AdaBoost technique. Specifically, the problem of ranking principal components, computed from two-class databases, is addressed by applying the AdaBoost procedure in a nested loop: each iteration of the inner loop boosts weak classifiers to a moderate one while the outer loop combines the moderate classifiers to build the global discriminant vector. In the proposed NDPCA, each weak learner is a linear classifier computed through a separating hyperplane defined by a KSVM decision boundary in the PCA space. We compare the proposed methodology with counterpart ones using facial expressions of the Radboud and Jaffe image databases. Our experimental results have shown that NDPCA outperforms the PCA in classification tasks. Also, it is competitive if compared with counterpart techniques given also suitable results for reconstruction.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nonlinear Discriminant Principal Component Analysis for Image Classification and Reconstruction\",\"authors\":\"T. Filisbino, G. Giraldi, C. Thomaz\",\"doi\":\"10.1109/BRACIS.2018.00061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a nonlinear version of the discriminant principal component analysis, named NDPCA, that is based on kernel support vector machines (KSVM) and the AdaBoost technique. Specifically, the problem of ranking principal components, computed from two-class databases, is addressed by applying the AdaBoost procedure in a nested loop: each iteration of the inner loop boosts weak classifiers to a moderate one while the outer loop combines the moderate classifiers to build the global discriminant vector. In the proposed NDPCA, each weak learner is a linear classifier computed through a separating hyperplane defined by a KSVM decision boundary in the PCA space. We compare the proposed methodology with counterpart ones using facial expressions of the Radboud and Jaffe image databases. Our experimental results have shown that NDPCA outperforms the PCA in classification tasks. Also, it is competitive if compared with counterpart techniques given also suitable results for reconstruction.\",\"PeriodicalId\":405190,\"journal\":{\"name\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRACIS.2018.00061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2018.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于核支持向量机(KSVM)和AdaBoost技术的判别主成分分析的非线性版本NDPCA。具体来说,通过在嵌套循环中应用AdaBoost过程,解决了从两类数据库计算主成分排序的问题:内循环的每次迭代将弱分类器提升到中等分类器,而外循环将中等分类器组合起来构建全局判别向量。在本文提出的NDPCA中,每个弱学习器是一个线性分类器,通过PCA空间中由KSVM决策边界定义的分离超平面计算得到。我们将提出的方法与使用Radboud和Jaffe图像数据库的面部表情的对应方法进行比较。我们的实验结果表明,NDPCA在分类任务上优于PCA。与同类技术相比,具有一定的竞争力,并给出了适合的重建结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear Discriminant Principal Component Analysis for Image Classification and Reconstruction
In this paper we present a nonlinear version of the discriminant principal component analysis, named NDPCA, that is based on kernel support vector machines (KSVM) and the AdaBoost technique. Specifically, the problem of ranking principal components, computed from two-class databases, is addressed by applying the AdaBoost procedure in a nested loop: each iteration of the inner loop boosts weak classifiers to a moderate one while the outer loop combines the moderate classifiers to build the global discriminant vector. In the proposed NDPCA, each weak learner is a linear classifier computed through a separating hyperplane defined by a KSVM decision boundary in the PCA space. We compare the proposed methodology with counterpart ones using facial expressions of the Radboud and Jaffe image databases. Our experimental results have shown that NDPCA outperforms the PCA in classification tasks. Also, it is competitive if compared with counterpart techniques given also suitable results for reconstruction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Data Using Extended Association Rule Network SPt: A Text Mining Process to Extract Relevant Areas from SW Documents to Exploratory Tests Gene Essentiality Prediction Using Topological Features From Metabolic Networks Bio-Inspired and Heuristic Methods Applied to a Benchmark of the Task Scheduling Problem A New Genetic Algorithm-Based Pruning Approach for Optimum-Path Forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1