使用WEKA进行医学诊断分类

J. Machado, Nicolás Lori, Ana Cecilia Coimbra, Filipe Miranda, A. Abelha
{"title":"使用WEKA进行医学诊断分类","authors":"J. Machado, Nicolás Lori, Ana Cecilia Coimbra, Filipe Miranda, A. Abelha","doi":"10.54941/ahfe100880","DOIUrl":null,"url":null,"abstract":"The use of data mining techniques is not new—commonly it is used in various other industries, such as financial services, marketing and manufacturing. The main goal of data mining is to find patterns in a large dataset that yield insight and expertise. Thus, in terms of healthcare, data mining methods have a wide range of uses, including diagnosing cancers, pattern recognition and prognosticating patient health outcomes. Each patient's diagnosis at the University of Porto Hospital (Centro Hospitalar Universitário Universitário do Porto) has an ICD-10-CM code. This data can be used to build a predictive model to classify diagnosis using secondary diagnosis. Three datasets were then created to be tested using data mining techniques. As a result, the algorithm that had the best performance was the Random Tree (99.8% corrected classified instances) using the third dataset with the five main diagnoses of each patient as parameters.","PeriodicalId":259265,"journal":{"name":"AHFE International","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Medical Diagnosis Classification Using WEKA\",\"authors\":\"J. Machado, Nicolás Lori, Ana Cecilia Coimbra, Filipe Miranda, A. Abelha\",\"doi\":\"10.54941/ahfe100880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of data mining techniques is not new—commonly it is used in various other industries, such as financial services, marketing and manufacturing. The main goal of data mining is to find patterns in a large dataset that yield insight and expertise. Thus, in terms of healthcare, data mining methods have a wide range of uses, including diagnosing cancers, pattern recognition and prognosticating patient health outcomes. Each patient's diagnosis at the University of Porto Hospital (Centro Hospitalar Universitário Universitário do Porto) has an ICD-10-CM code. This data can be used to build a predictive model to classify diagnosis using secondary diagnosis. Three datasets were then created to be tested using data mining techniques. As a result, the algorithm that had the best performance was the Random Tree (99.8% corrected classified instances) using the third dataset with the five main diagnoses of each patient as parameters.\",\"PeriodicalId\":259265,\"journal\":{\"name\":\"AHFE International\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AHFE International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54941/ahfe100880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AHFE International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54941/ahfe100880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据挖掘技术的使用并不新鲜,它通常用于各种其他行业,如金融服务、营销和制造业。数据挖掘的主要目标是在大型数据集中找到能够产生洞察力和专业知识的模式。因此,就医疗保健而言,数据挖掘方法具有广泛的用途,包括诊断癌症、模式识别和预测患者健康结果。波尔图大学医院(Centro Hospitalar Universitário Universitário do Porto)的每位患者的诊断都有一个ICD-10-CM代码。该数据可用于建立预测模型,利用二次诊断对诊断进行分类。然后创建三个数据集,使用数据挖掘技术进行测试。结果,性能最好的算法是使用第三个数据集的随机树(99.8%的分类实例纠正),每个患者的五个主要诊断作为参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Medical Diagnosis Classification Using WEKA
The use of data mining techniques is not new—commonly it is used in various other industries, such as financial services, marketing and manufacturing. The main goal of data mining is to find patterns in a large dataset that yield insight and expertise. Thus, in terms of healthcare, data mining methods have a wide range of uses, including diagnosing cancers, pattern recognition and prognosticating patient health outcomes. Each patient's diagnosis at the University of Porto Hospital (Centro Hospitalar Universitário Universitário do Porto) has an ICD-10-CM code. This data can be used to build a predictive model to classify diagnosis using secondary diagnosis. Three datasets were then created to be tested using data mining techniques. As a result, the algorithm that had the best performance was the Random Tree (99.8% corrected classified instances) using the third dataset with the five main diagnoses of each patient as parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revitalizing The National Folk Play: The Tiger Hunting Folk Play Promoting Occupational Safety, Health, and Well-Being in SME Manufacturing Companies A Multi-Criteria and Multi-Actor Perspective for the Evaluation of Sustainability Services Open Innovation and Prospective Ergonomics for Smart Clothes Time Study and Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1