低资源语言文档中的字符分析

Tak-sum Wong, J. Lee
{"title":"低资源语言文档中的字符分析","authors":"Tak-sum Wong, J. Lee","doi":"10.1145/3372124.3372129","DOIUrl":null,"url":null,"abstract":"This paper focuses on automatic character profiling --- connecting \"who\", \"what\" and \"when\" --- in literary documents. This task is especially challenging for low-resource languages, since off-the-shelf tools for named entity recognition, syntactic parsing and other natural language processing tasks are rarely available. We investigate the impact of human annotation on automatic profiling. Based on a Medieval Chinese corpus, experimental results show that even a relatively small amount of word segmentation, part-of-speech and dependency annotation can improve accuracy in named entity recognition and in identifying character-verb associations, but not character-toponym associations.","PeriodicalId":145556,"journal":{"name":"Proceedings of the 24th Australasian Document Computing Symposium","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Character Profiling in Low-Resource Language Documents\",\"authors\":\"Tak-sum Wong, J. Lee\",\"doi\":\"10.1145/3372124.3372129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on automatic character profiling --- connecting \\\"who\\\", \\\"what\\\" and \\\"when\\\" --- in literary documents. This task is especially challenging for low-resource languages, since off-the-shelf tools for named entity recognition, syntactic parsing and other natural language processing tasks are rarely available. We investigate the impact of human annotation on automatic profiling. Based on a Medieval Chinese corpus, experimental results show that even a relatively small amount of word segmentation, part-of-speech and dependency annotation can improve accuracy in named entity recognition and in identifying character-verb associations, but not character-toponym associations.\",\"PeriodicalId\":145556,\"journal\":{\"name\":\"Proceedings of the 24th Australasian Document Computing Symposium\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th Australasian Document Computing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3372124.3372129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th Australasian Document Computing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372124.3372129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要关注文学文献中的自动人物特征分析——连接“谁”、“什么”和“什么时候”。这项任务对于低资源语言来说尤其具有挑战性,因为用于命名实体识别、语法解析和其他自然语言处理任务的现成工具很少可用。我们研究了人工注释对自动分析的影响。基于中古汉语语料库的实验结果表明,即使是相对少量的分词、词性和依存注释也能提高命名实体识别和字动关联识别的准确性,但不能提高字地名关联识别的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Character Profiling in Low-Resource Language Documents
This paper focuses on automatic character profiling --- connecting "who", "what" and "when" --- in literary documents. This task is especially challenging for low-resource languages, since off-the-shelf tools for named entity recognition, syntactic parsing and other natural language processing tasks are rarely available. We investigate the impact of human annotation on automatic profiling. Based on a Medieval Chinese corpus, experimental results show that even a relatively small amount of word segmentation, part-of-speech and dependency annotation can improve accuracy in named entity recognition and in identifying character-verb associations, but not character-toponym associations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Differences in language use: Insights from job and talent search Proceedings of the 24th Australasian Document Computing Symposium Taking Risks with Confidence Towards Automatically Classifying Case Law Citation Treatment Using Neural Networks Character Profiling in Low-Resource Language Documents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1