在超声图像序列中检测造影剂用于肿瘤诊断

K. Noro, Koichi Ito, Yukari Yanagisawa, M. Sakamoto, S. Mori, K. Shiga, T. Kodama, T. Aoki
{"title":"在超声图像序列中检测造影剂用于肿瘤诊断","authors":"K. Noro, Koichi Ito, Yukari Yanagisawa, M. Sakamoto, S. Mori, K. Shiga, T. Kodama, T. Aoki","doi":"10.1109/APSIPA.2014.7041598","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for detecting contrast agents in ultrasound image sequences to develop diagnostic ultrasound imaging systems for tumor diagnosis. The conventional methods are based on simple subtraction of ultrasound images to detect ultrasound contrast agents, where the conventional methods need ultrasound image sequences with and without contrast agents. Even if the subject slightly moves, the detection result of the conventional methods includes significant errors. On the other hand, the proposed method employs the spatio-temporal analysis of the pixel intensity variation over several frames. The proposed method also employs motion estimation to select optimal image frames for detecting contrast agents. Through a set of experiments using mice, we demonstrate that the proposed method exhibits efficient performance compared with the conventional methods.","PeriodicalId":231382,"journal":{"name":"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting contrast agents in ultrasound image sequences for tumor diagnosis\",\"authors\":\"K. Noro, Koichi Ito, Yukari Yanagisawa, M. Sakamoto, S. Mori, K. Shiga, T. Kodama, T. Aoki\",\"doi\":\"10.1109/APSIPA.2014.7041598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method for detecting contrast agents in ultrasound image sequences to develop diagnostic ultrasound imaging systems for tumor diagnosis. The conventional methods are based on simple subtraction of ultrasound images to detect ultrasound contrast agents, where the conventional methods need ultrasound image sequences with and without contrast agents. Even if the subject slightly moves, the detection result of the conventional methods includes significant errors. On the other hand, the proposed method employs the spatio-temporal analysis of the pixel intensity variation over several frames. The proposed method also employs motion estimation to select optimal image frames for detecting contrast agents. Through a set of experiments using mice, we demonstrate that the proposed method exhibits efficient performance compared with the conventional methods.\",\"PeriodicalId\":231382,\"journal\":{\"name\":\"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPA.2014.7041598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2014.7041598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种在超声图像序列中检测造影剂的方法,以开发用于肿瘤诊断的超声诊断成像系统。传统方法是基于超声图像的简单减法来检测超声造影剂,其中传统方法需要有和没有造影剂的超声图像序列。即使被试轻微移动,传统方法的检测结果也存在显著误差。另一方面,该方法采用多帧像素强度变化的时空分析。该方法还采用运动估计来选择用于检测造影剂的最佳图像帧。通过一组小鼠实验,我们证明了与传统方法相比,所提出的方法具有有效的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting contrast agents in ultrasound image sequences for tumor diagnosis
This paper proposes a method for detecting contrast agents in ultrasound image sequences to develop diagnostic ultrasound imaging systems for tumor diagnosis. The conventional methods are based on simple subtraction of ultrasound images to detect ultrasound contrast agents, where the conventional methods need ultrasound image sequences with and without contrast agents. Even if the subject slightly moves, the detection result of the conventional methods includes significant errors. On the other hand, the proposed method employs the spatio-temporal analysis of the pixel intensity variation over several frames. The proposed method also employs motion estimation to select optimal image frames for detecting contrast agents. Through a set of experiments using mice, we demonstrate that the proposed method exhibits efficient performance compared with the conventional methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smoothing of spatial filter by graph Fourier transform for EEG signals Intra line copy for HEVC screen content coding Design of FPGA-based rapid prototype spectral subtraction for hands-free speech applications Fetal ECG extraction using adaptive functional link artificial neural network Opened Pins Recommendation System to promote tourism sector in Chiang Rai Thailand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1