多传感器数据融合的最小熵方法

Yifeng Zhou, H. Leung
{"title":"多传感器数据融合的最小熵方法","authors":"Yifeng Zhou, H. Leung","doi":"10.1109/HOST.1997.613542","DOIUrl":null,"url":null,"abstract":"In this paper, we present a minimum entropy fusion approach for multisensor data fusion in non-Gaussian environments. We represent the fused data in the form of the weighted sum of the multisensor outputs and use the varimax norm as the information measure. The optimum weights are obtained by maximizing the varimax norm of the fused data. The minimum entropy fusion solution only depends on the empirical distribution of the sensor data and makes no specific distribution assumptions about the sensor data. Numerical simulation results are provided to show the effectiveness of the proposed fusion approach.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Minimum entropy approach for multisensor data fusion\",\"authors\":\"Yifeng Zhou, H. Leung\",\"doi\":\"10.1109/HOST.1997.613542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a minimum entropy fusion approach for multisensor data fusion in non-Gaussian environments. We represent the fused data in the form of the weighted sum of the multisensor outputs and use the varimax norm as the information measure. The optimum weights are obtained by maximizing the varimax norm of the fused data. The minimum entropy fusion solution only depends on the empirical distribution of the sensor data and makes no specific distribution assumptions about the sensor data. Numerical simulation results are provided to show the effectiveness of the proposed fusion approach.\",\"PeriodicalId\":305928,\"journal\":{\"name\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOST.1997.613542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

本文提出了一种用于非高斯环境下多传感器数据融合的最小熵融合方法。我们将融合后的数据以多传感器输出的加权和的形式表示,并使用变差范数作为信息度量。通过最大化融合数据的最大变范数来获得最优权重。最小熵融合解只依赖于传感器数据的经验分布,而没有对传感器数据进行具体的分布假设。数值仿真结果表明了所提出的融合方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Minimum entropy approach for multisensor data fusion
In this paper, we present a minimum entropy fusion approach for multisensor data fusion in non-Gaussian environments. We represent the fused data in the form of the weighted sum of the multisensor outputs and use the varimax norm as the information measure. The optimum weights are obtained by maximizing the varimax norm of the fused data. The minimum entropy fusion solution only depends on the empirical distribution of the sensor data and makes no specific distribution assumptions about the sensor data. Numerical simulation results are provided to show the effectiveness of the proposed fusion approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Narrow band source separation in wide band context applications to array signal processing Higher-order statistics for tissue characterization from ultrasound images An iterative mixed norm image restoration algorithm Comparison between asymmetric generalized Gaussian (AGG) and symmetric-/spl alpha/-stable (S/spl alpha/S) noise models for signal estimation in non Gaussian environments Linear algebraic approaches for (almost) periodic moving average system identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1