José Josemar de Oliveira, J. Carvalho, C. Freitas, R. Sabourin
{"title":"手写文字识别的特征集评价","authors":"José Josemar de Oliveira, J. Carvalho, C. Freitas, R. Sabourin","doi":"10.1109/IWFHR.2002.1030951","DOIUrl":null,"url":null,"abstract":"This paper presents a baseline system used to evaluate feature sets for word recognition. The main goal is to determine an optimum feature set to represent the handwritten names for the months of the year in Brazilian Portuguese language. Three kinds of features are evaluated: perceptual, directional and topological. The evaluation shows that taken in isolation, the perceptual feature set produces the best results for the lexicon used. These results can be further improved combining the feature sets. The baseline system developed obtains an average recognition rate of 87%. This can be considered a good result considering that no explicit segmentation is performed.","PeriodicalId":114017,"journal":{"name":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Feature sets evaluation for handwritten word recognition\",\"authors\":\"José Josemar de Oliveira, J. Carvalho, C. Freitas, R. Sabourin\",\"doi\":\"10.1109/IWFHR.2002.1030951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a baseline system used to evaluate feature sets for word recognition. The main goal is to determine an optimum feature set to represent the handwritten names for the months of the year in Brazilian Portuguese language. Three kinds of features are evaluated: perceptual, directional and topological. The evaluation shows that taken in isolation, the perceptual feature set produces the best results for the lexicon used. These results can be further improved combining the feature sets. The baseline system developed obtains an average recognition rate of 87%. This can be considered a good result considering that no explicit segmentation is performed.\",\"PeriodicalId\":114017,\"journal\":{\"name\":\"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWFHR.2002.1030951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWFHR.2002.1030951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feature sets evaluation for handwritten word recognition
This paper presents a baseline system used to evaluate feature sets for word recognition. The main goal is to determine an optimum feature set to represent the handwritten names for the months of the year in Brazilian Portuguese language. Three kinds of features are evaluated: perceptual, directional and topological. The evaluation shows that taken in isolation, the perceptual feature set produces the best results for the lexicon used. These results can be further improved combining the feature sets. The baseline system developed obtains an average recognition rate of 87%. This can be considered a good result considering that no explicit segmentation is performed.