辅助方法支持下基于改进重整化算法的自适应控制的收敛性

J. Tar, K. Kozeowski, B. Pátkai, D. Tikk
{"title":"辅助方法支持下基于改进重整化算法的自适应控制的收敛性","authors":"J. Tar, K. Kozeowski, B. Pátkai, D. Tikk","doi":"10.1109/ROMOCO.2002.1177083","DOIUrl":null,"url":null,"abstract":"A new branch of computational cybernetics seems to emerge on the principles akin to that of the traditional soft computing (SC). In the present paper the essential differences between the conventional and the novel approach are summarized. At the cost of the use of a simple dynamic model, a priori known, uniform, lucid, structure of reduced size, machine learning by a simple and short explicit algebraic procedure especially fit to real time applications considerable computational advantages can be achieved. The key element of the approach is the modified renormalization transformation supported by the application of a simple linear transformation, and the use of a simple prediction technique. It analyzes how the satisfactory conditions of the \"complete stability\" can be guaranteed, and the convergence properties can be improved by the ancillary methods. Simulation examples are presented for the control of a 3 DOF SCARA arm by the use of partially stretched orthogonal transformations.","PeriodicalId":213750,"journal":{"name":"Proceedings of the Third International Workshop on Robot Motion and Control, 2002. RoMoCo '02.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Convergence properties of the modified renormalization algorithm based adaptive control supported by ancillary methods\",\"authors\":\"J. Tar, K. Kozeowski, B. Pátkai, D. Tikk\",\"doi\":\"10.1109/ROMOCO.2002.1177083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new branch of computational cybernetics seems to emerge on the principles akin to that of the traditional soft computing (SC). In the present paper the essential differences between the conventional and the novel approach are summarized. At the cost of the use of a simple dynamic model, a priori known, uniform, lucid, structure of reduced size, machine learning by a simple and short explicit algebraic procedure especially fit to real time applications considerable computational advantages can be achieved. The key element of the approach is the modified renormalization transformation supported by the application of a simple linear transformation, and the use of a simple prediction technique. It analyzes how the satisfactory conditions of the \\\"complete stability\\\" can be guaranteed, and the convergence properties can be improved by the ancillary methods. Simulation examples are presented for the control of a 3 DOF SCARA arm by the use of partially stretched orthogonal transformations.\",\"PeriodicalId\":213750,\"journal\":{\"name\":\"Proceedings of the Third International Workshop on Robot Motion and Control, 2002. RoMoCo '02.\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third International Workshop on Robot Motion and Control, 2002. RoMoCo '02.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROMOCO.2002.1177083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third International Workshop on Robot Motion and Control, 2002. RoMoCo '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMOCO.2002.1177083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

计算控制论的一个新分支似乎出现了,其原理与传统的软计算(SC)相似。本文总结了传统方法与新方法的本质区别。以使用简单的动态模型为代价,先验已知,统一,清晰,结构缩小,机器学习通过简单而简短的显式代数过程特别适合于实时应用,可以实现相当大的计算优势。该方法的关键要素是通过应用简单的线性变换来支持改进的重整化变换,并使用简单的预测技术。分析了如何保证“完全稳定”的满意条件,并通过辅助方法改善了收敛性。给出了利用部分拉伸正交变换控制3自由度SCARA臂的仿真实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convergence properties of the modified renormalization algorithm based adaptive control supported by ancillary methods
A new branch of computational cybernetics seems to emerge on the principles akin to that of the traditional soft computing (SC). In the present paper the essential differences between the conventional and the novel approach are summarized. At the cost of the use of a simple dynamic model, a priori known, uniform, lucid, structure of reduced size, machine learning by a simple and short explicit algebraic procedure especially fit to real time applications considerable computational advantages can be achieved. The key element of the approach is the modified renormalization transformation supported by the application of a simple linear transformation, and the use of a simple prediction technique. It analyzes how the satisfactory conditions of the "complete stability" can be guaranteed, and the convergence properties can be improved by the ancillary methods. Simulation examples are presented for the control of a 3 DOF SCARA arm by the use of partially stretched orthogonal transformations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved sliding mode robot control-a fuzzy approach Bayes parameter identification for optimal control of robots Two motion planning approaches for six-legged robot Redundant manipulators motion through singularities based on modified Jacobian method Motion planning in endogenous configuration space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1