{"title":"功率比例二极管包层泵浦2.8µm Er:ZBLAN光纤激光器(会议报告)","authors":"G. Newburgh, M. Dubinskii, Jun Zhang, W. Lu","doi":"10.1117/12.2522816","DOIUrl":null,"url":null,"abstract":"Recent progress in development of Mid–IR lasers at ~2.8 µm and ~3.5 µm based on commercial Er:ZBLAN fibers has enabled variety of environmental sensing, defense and medical applications. This development faces a few major challenges, among which are relatively low laser efficiency (stemming from the naturally high quantum defect of laser operation) and power scaling limitation due to output self-pulsing (perceived to be coming from presence of clustering or ion pairs in a highly doped fiber, which act as saturable absorbers).We report on a study of the power scaling of a 976 nm diode-pumped double-clad Er:ZBLAN fiber laser at the ~2.8 µm, 4I11/2-4I13/2 transition. The passively cooled 7% Er-doped fluoride fiber laser was shown to achieve slope efficiency over 25% and 50 W with respect to launched pump power in both CW and Quasi-CW regimes of free-running operation. Laser power scaling was found to be limited by available 976 nm diode pump power.","PeriodicalId":423711,"journal":{"name":"Laser Technology for Defense and Security XV","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A power scaled diode cladding pumped 2.8 µm Er:ZBLAN fiber laser (Conference Presentation)\",\"authors\":\"G. Newburgh, M. Dubinskii, Jun Zhang, W. Lu\",\"doi\":\"10.1117/12.2522816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent progress in development of Mid–IR lasers at ~2.8 µm and ~3.5 µm based on commercial Er:ZBLAN fibers has enabled variety of environmental sensing, defense and medical applications. This development faces a few major challenges, among which are relatively low laser efficiency (stemming from the naturally high quantum defect of laser operation) and power scaling limitation due to output self-pulsing (perceived to be coming from presence of clustering or ion pairs in a highly doped fiber, which act as saturable absorbers).We report on a study of the power scaling of a 976 nm diode-pumped double-clad Er:ZBLAN fiber laser at the ~2.8 µm, 4I11/2-4I13/2 transition. The passively cooled 7% Er-doped fluoride fiber laser was shown to achieve slope efficiency over 25% and 50 W with respect to launched pump power in both CW and Quasi-CW regimes of free-running operation. Laser power scaling was found to be limited by available 976 nm diode pump power.\",\"PeriodicalId\":423711,\"journal\":{\"name\":\"Laser Technology for Defense and Security XV\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Technology for Defense and Security XV\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2522816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Technology for Defense and Security XV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2522816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A power scaled diode cladding pumped 2.8 µm Er:ZBLAN fiber laser (Conference Presentation)
Recent progress in development of Mid–IR lasers at ~2.8 µm and ~3.5 µm based on commercial Er:ZBLAN fibers has enabled variety of environmental sensing, defense and medical applications. This development faces a few major challenges, among which are relatively low laser efficiency (stemming from the naturally high quantum defect of laser operation) and power scaling limitation due to output self-pulsing (perceived to be coming from presence of clustering or ion pairs in a highly doped fiber, which act as saturable absorbers).We report on a study of the power scaling of a 976 nm diode-pumped double-clad Er:ZBLAN fiber laser at the ~2.8 µm, 4I11/2-4I13/2 transition. The passively cooled 7% Er-doped fluoride fiber laser was shown to achieve slope efficiency over 25% and 50 W with respect to launched pump power in both CW and Quasi-CW regimes of free-running operation. Laser power scaling was found to be limited by available 976 nm diode pump power.