皮肤病变分类器对皮肤科医生决策的贡献

Yanal Wazaefi, Sébastien Paris, B. Fertil
{"title":"皮肤病变分类器对皮肤科医生决策的贡献","authors":"Yanal Wazaefi, Sébastien Paris, B. Fertil","doi":"10.1109/IPTA.2012.6469560","DOIUrl":null,"url":null,"abstract":"In this paper, we investigated to what extent the melanoma diagnosis can be impacted by an automatic system using dermoscopic images of pigmented skin lesions. Nine dermatologists were asked to give their diagnosis about 1097 dermoscopic images of skin lesions, including 88 histopathologically confirmed melanomas. The automatic diagnosis of black tumors was based on Local Binary Patterns (LBP) without segmentation of the dermoscopic images. The classification was performed using a simple linear support vector machines (SVM). The classifier showed a comparable performance with respect to dermatologists (AUC: 0.85). It appeared that a fusion of dermatologist's diagnosis with the automatic diagnosis improves the overall performances. We proposed a simple fusion strategy (highest-risk approach) with the automatic diagnosis, which improves the dermatologists' daily practice performance.","PeriodicalId":267290,"journal":{"name":"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Contribution of a classifier of skin lesions to the dermatologist's decision\",\"authors\":\"Yanal Wazaefi, Sébastien Paris, B. Fertil\",\"doi\":\"10.1109/IPTA.2012.6469560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigated to what extent the melanoma diagnosis can be impacted by an automatic system using dermoscopic images of pigmented skin lesions. Nine dermatologists were asked to give their diagnosis about 1097 dermoscopic images of skin lesions, including 88 histopathologically confirmed melanomas. The automatic diagnosis of black tumors was based on Local Binary Patterns (LBP) without segmentation of the dermoscopic images. The classification was performed using a simple linear support vector machines (SVM). The classifier showed a comparable performance with respect to dermatologists (AUC: 0.85). It appeared that a fusion of dermatologist's diagnosis with the automatic diagnosis improves the overall performances. We proposed a simple fusion strategy (highest-risk approach) with the automatic diagnosis, which improves the dermatologists' daily practice performance.\",\"PeriodicalId\":267290,\"journal\":{\"name\":\"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2012.6469560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2012.6469560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们研究了在何种程度上黑色素瘤的诊断可以影响自动系统使用皮肤镜图像的色素皮肤病变。9位皮肤科医生被要求对1097张皮肤病变的镜下图像进行诊断,其中包括88张经组织病理学证实的黑色素瘤。黑色肿瘤的自动诊断基于局部二值模式(LBP),不需要对皮肤镜图像进行分割。使用简单的线性支持向量机(SVM)进行分类。该分类器表现出与皮肤科医生相当的性能(AUC: 0.85)。结果表明,将皮肤科医生的诊断与自动诊断相结合可以提高整体性能。我们提出了一种简单的融合策略(最高风险方法)与自动诊断,提高了皮肤科医生的日常实践绩效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contribution of a classifier of skin lesions to the dermatologist's decision
In this paper, we investigated to what extent the melanoma diagnosis can be impacted by an automatic system using dermoscopic images of pigmented skin lesions. Nine dermatologists were asked to give their diagnosis about 1097 dermoscopic images of skin lesions, including 88 histopathologically confirmed melanomas. The automatic diagnosis of black tumors was based on Local Binary Patterns (LBP) without segmentation of the dermoscopic images. The classification was performed using a simple linear support vector machines (SVM). The classifier showed a comparable performance with respect to dermatologists (AUC: 0.85). It appeared that a fusion of dermatologist's diagnosis with the automatic diagnosis improves the overall performances. We proposed a simple fusion strategy (highest-risk approach) with the automatic diagnosis, which improves the dermatologists' daily practice performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Case study: Deployment of the 2D NoC on 3D for the generation of large emulation platforms A combining approach for 2D face recognition application on IV2 database Spherical coordinates framed RGB color space dichromatic reflection model based image segmentation: Application to wildland fires' outlines extraction Image processing and vision for the study and the modeling of spreading fires Real time watermarking to authenticate the WSQ bitstream
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1