用网络内计算训练类chatgpt模型

Shuhao Fu, Yong Liao, Pengyuan Zhou
{"title":"用网络内计算训练类chatgpt模型","authors":"Shuhao Fu, Yong Liao, Pengyuan Zhou","doi":"10.1145/3600061.3603136","DOIUrl":null,"url":null,"abstract":"ChatGPT shows the enormous potential of large language models (LLMs). These models can easily reach the size of billions of parameters and create training difficulties for the majority. We propose a paradigm to train LLMs using distributed in-network computation on routers. Our preliminary result shows that our design allows LLMs to be trained at a reasonable learning rate without demanding extensive GPU resources.","PeriodicalId":228934,"journal":{"name":"Proceedings of the 7th Asia-Pacific Workshop on Networking","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Training ChatGPT-like Models with In-network Computation\",\"authors\":\"Shuhao Fu, Yong Liao, Pengyuan Zhou\",\"doi\":\"10.1145/3600061.3603136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ChatGPT shows the enormous potential of large language models (LLMs). These models can easily reach the size of billions of parameters and create training difficulties for the majority. We propose a paradigm to train LLMs using distributed in-network computation on routers. Our preliminary result shows that our design allows LLMs to be trained at a reasonable learning rate without demanding extensive GPU resources.\",\"PeriodicalId\":228934,\"journal\":{\"name\":\"Proceedings of the 7th Asia-Pacific Workshop on Networking\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th Asia-Pacific Workshop on Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3600061.3603136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th Asia-Pacific Workshop on Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3600061.3603136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

ChatGPT显示了大型语言模型(llm)的巨大潜力。这些模型可以很容易地达到数十亿个参数的规模,并为大多数人带来训练困难。我们提出了一个在路由器上使用分布式网络内计算来训练llm的范例。我们的初步结果表明,我们的设计允许llm以合理的学习率进行训练,而不需要大量的GPU资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Training ChatGPT-like Models with In-network Computation
ChatGPT shows the enormous potential of large language models (LLMs). These models can easily reach the size of billions of parameters and create training difficulties for the majority. We propose a paradigm to train LLMs using distributed in-network computation on routers. Our preliminary result shows that our design allows LLMs to be trained at a reasonable learning rate without demanding extensive GPU resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deadline Enables In-Order Flowlet Switching for Load Balancing Online Detection of 1D and 2D Hierarchical Super-Spreaders in High-Speed Networks ABC: Adaptive Bitrate Algorithm Commander for Multi-Client Video Streaming Bamboo: Boosting Training Efficiency for Real-Time Video Streaming via Online Grouped Federated Transfer Learning Improving Cloud Storage Network Bandwidth Utilization of Scientific Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1