基于电压纹波的并网光伏逆变器无源孤岛检测技术

B. Guha, Rami J. Haddad, Y. Kalaani
{"title":"基于电压纹波的并网光伏逆变器无源孤岛检测技术","authors":"B. Guha, Rami J. Haddad, Y. Kalaani","doi":"10.1109/JPETS.2016.2586847","DOIUrl":null,"url":null,"abstract":"One of the main challenges of integrating distributed generation into the power grid is islanding, which occurs when a disconnected power line is adversely energized by a local distributed generation source. If islanding is not quickly detected, it can present serious safety and hazardous conditions. Conventional passive detection techniques used today are entirely dependent on the parameters of the power system, which under certain operating conditions may fail to detect islanding. In this paper, a novel and efficient passive islanding detection technique for grid-connected photovoltaic-based inverters is presented. In this technique, the ripple content of the inverter output voltage at the point of common coupling is monitored for deviations using time-domain spectral analysis. Islanding is then detected whenever the ripple spectral content exceeds a preset threshold level for a certain period of time. The performance of this technique was extensively tested and quantified under a wide range of operating conditions. It was determined that the proposed technique did not exhibit any non-detection zone and was able to detect all types of islanding cases within 300 ms of the allowed delay time. Furthermore, the proposed technique was found to be robust and inherently immune to other degrading factors, since it is relatively independent of system parameters, power system scaling, or the number of distributed generation sources present within the islanding zone.","PeriodicalId":170601,"journal":{"name":"IEEE Power and Energy Technology Systems Journal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Voltage Ripple-Based Passive Islanding Detection Technique for Grid-Connected Photovoltaic Inverters\",\"authors\":\"B. Guha, Rami J. Haddad, Y. Kalaani\",\"doi\":\"10.1109/JPETS.2016.2586847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main challenges of integrating distributed generation into the power grid is islanding, which occurs when a disconnected power line is adversely energized by a local distributed generation source. If islanding is not quickly detected, it can present serious safety and hazardous conditions. Conventional passive detection techniques used today are entirely dependent on the parameters of the power system, which under certain operating conditions may fail to detect islanding. In this paper, a novel and efficient passive islanding detection technique for grid-connected photovoltaic-based inverters is presented. In this technique, the ripple content of the inverter output voltage at the point of common coupling is monitored for deviations using time-domain spectral analysis. Islanding is then detected whenever the ripple spectral content exceeds a preset threshold level for a certain period of time. The performance of this technique was extensively tested and quantified under a wide range of operating conditions. It was determined that the proposed technique did not exhibit any non-detection zone and was able to detect all types of islanding cases within 300 ms of the allowed delay time. Furthermore, the proposed technique was found to be robust and inherently immune to other degrading factors, since it is relatively independent of system parameters, power system scaling, or the number of distributed generation sources present within the islanding zone.\",\"PeriodicalId\":170601,\"journal\":{\"name\":\"IEEE Power and Energy Technology Systems Journal\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Power and Energy Technology Systems Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JPETS.2016.2586847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Power and Energy Technology Systems Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JPETS.2016.2586847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

将分布式发电纳入电网的主要挑战之一是孤岛,当断开的电力线被本地分布式发电源反向供电时,就会发生孤岛。如果不能迅速发现孤岛,它可能会带来严重的安全和危险状况。目前使用的传统无源检测技术完全依赖于电力系统的参数,在某些运行条件下可能无法检测到孤岛。针对并网光伏逆变器,提出了一种新颖高效的无源孤岛检测技术。在这种技术中,逆变器输出电压的纹波内容在共耦合点是监测偏差使用时域频谱分析。然后,每当纹波谱含量超过预设阈值水平一段时间时,检测到孤岛。在各种操作条件下,对该技术的性能进行了广泛的测试和量化。经确定,所提议的技术没有出现任何无法检测的区域,并且能够在允许的延迟时间的300毫秒内检测到所有类型的孤岛病例。此外,所提出的技术被发现具有鲁棒性,并且固有地不受其他退化因素的影响,因为它相对独立于系统参数、电力系统规模或孤岛区域内分布式发电源的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Voltage Ripple-Based Passive Islanding Detection Technique for Grid-Connected Photovoltaic Inverters
One of the main challenges of integrating distributed generation into the power grid is islanding, which occurs when a disconnected power line is adversely energized by a local distributed generation source. If islanding is not quickly detected, it can present serious safety and hazardous conditions. Conventional passive detection techniques used today are entirely dependent on the parameters of the power system, which under certain operating conditions may fail to detect islanding. In this paper, a novel and efficient passive islanding detection technique for grid-connected photovoltaic-based inverters is presented. In this technique, the ripple content of the inverter output voltage at the point of common coupling is monitored for deviations using time-domain spectral analysis. Islanding is then detected whenever the ripple spectral content exceeds a preset threshold level for a certain period of time. The performance of this technique was extensively tested and quantified under a wide range of operating conditions. It was determined that the proposed technique did not exhibit any non-detection zone and was able to detect all types of islanding cases within 300 ms of the allowed delay time. Furthermore, the proposed technique was found to be robust and inherently immune to other degrading factors, since it is relatively independent of system parameters, power system scaling, or the number of distributed generation sources present within the islanding zone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rapid Transfer Matrix-Based Calculation of Steady-State Temperature Rises in Cable Ducts Containing Groups of Three Phase Cable 2019 Index IEEE Power and Energy Technology Systems Journal Vol. 6 Online Centralized Charging Coordination of PEVs With Decentralized Var Discharging for Mitigation of Voltage Unbalance Sampling-Based Model Predictive Control of PV-Integrated Energy Storage System Considering Power Generation Forecast and Real-Time Price Multi-Rate Mixed-Solver for Real-Time Nonlinear Electromagnetic Transient Emulation of AC/DC Networks on FPGA-MPSoC Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1