一种基于可变形网格模型的多模态人脸建模与识别方法

A. Ansari, M. Abdel-Mottaleb, M. Mahoor
{"title":"一种基于可变形网格模型的多模态人脸建模与识别方法","authors":"A. Ansari, M. Abdel-Mottaleb, M. Mahoor","doi":"10.1109/BCC.2006.4341633","DOIUrl":null,"url":null,"abstract":"We present a multimodal approach for 3D face modeling and recognition from two frontal and one profile view stereo images of the face. Once the images are captured, the algorithm starts by extracting selected 2D facial features from one of the frontal views and computes a dense disparity map from the two frontal images. We then align a low resolution mesh model to the selected features, adjust its vertices at the selected features and along the profile line using the profile view, increase its vertices to a higher resolution, and re-project them back on the frontal image. Using the coordinates of the re-projected vertices and their corresponding disparities, we capture and compute the 3D facial shape variations using triangulation. The final result is a deformed 3D model specific to a given subject's face. Application of the model in 3D face recognition validates the algorithm with a high recognition rate.","PeriodicalId":226152,"journal":{"name":"2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Multimodal Approach for 3D Face Modeling and Recognition Using Deformable Mesh Model\",\"authors\":\"A. Ansari, M. Abdel-Mottaleb, M. Mahoor\",\"doi\":\"10.1109/BCC.2006.4341633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a multimodal approach for 3D face modeling and recognition from two frontal and one profile view stereo images of the face. Once the images are captured, the algorithm starts by extracting selected 2D facial features from one of the frontal views and computes a dense disparity map from the two frontal images. We then align a low resolution mesh model to the selected features, adjust its vertices at the selected features and along the profile line using the profile view, increase its vertices to a higher resolution, and re-project them back on the frontal image. Using the coordinates of the re-projected vertices and their corresponding disparities, we capture and compute the 3D facial shape variations using triangulation. The final result is a deformed 3D model specific to a given subject's face. Application of the model in 3D face recognition validates the algorithm with a high recognition rate.\",\"PeriodicalId\":226152,\"journal\":{\"name\":\"2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BCC.2006.4341633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCC.2006.4341633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一种多模态方法,用于3D人脸建模和识别从两个正面和一个侧面视图的立体图像的脸。一旦图像被捕获,算法首先从其中一个正面视图中提取选定的2D面部特征,并从两个正面图像中计算密集的视差图。然后,我们将低分辨率网格模型与选定的特征对齐,使用轮廓视图调整其在选定特征处和沿轮廓线的顶点,将其顶点增加到更高的分辨率,并将它们重新投影回正面图像上。利用重新投影顶点的坐标及其对应的差值,我们使用三角测量捕获并计算3D面部形状变化。最终的结果是一个特定于给定受试者面部的变形3D模型。该模型在三维人脸识别中的应用验证了该算法具有较高的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multimodal Approach for 3D Face Modeling and Recognition Using Deformable Mesh Model
We present a multimodal approach for 3D face modeling and recognition from two frontal and one profile view stereo images of the face. Once the images are captured, the algorithm starts by extracting selected 2D facial features from one of the frontal views and computes a dense disparity map from the two frontal images. We then align a low resolution mesh model to the selected features, adjust its vertices at the selected features and along the profile line using the profile view, increase its vertices to a higher resolution, and re-project them back on the frontal image. Using the coordinates of the re-projected vertices and their corresponding disparities, we capture and compute the 3D facial shape variations using triangulation. The final result is a deformed 3D model specific to a given subject's face. Application of the model in 3D face recognition validates the algorithm with a high recognition rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How Low Can You Go? Low Resolution Face Recognition Study Using Kernel Correlation Feature Analysis on the FRGCv2 dataset Using Biometric Verification to Estimate Identification Performance Segmenting Non-Ideal Irises Using Geodesic Active Contours Gait Recognition Through MPCA Plus LDA 3D Touchless Fingerprints: Compatibility with Legacy Rolled Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1