John F. Morales, C. Varon, Margot Deviaene, Pascal Borzée, D. Testelmans, B. Buyse, S. Huffel
{"title":"基于小波分解与相空间重构的SpO2信号睡眠呼吸暂停低通气综合征分类","authors":"John F. Morales, C. Varon, Margot Deviaene, Pascal Borzée, D. Testelmans, B. Buyse, S. Huffel","doi":"10.1109/BSN.2017.7936003","DOIUrl":null,"url":null,"abstract":"Sleep Apnea Hypopnea Syndrome (SAHS) is a sleep disorder where patients experience multiple airflow cessations or reductions during the night. It is recognized as a common condition with a population prevalence of 1% to 6.5%. The Apnea Hypopnea Index (AHI) characterizes the severity of SAHS using signals obtained from Polysomnography (PSG); this requires the use of multiple sensors on the patient and an overnight hospital stay. The development of cheaper and more comfortable screening techniques involving wearable devices is, therefore, desirable. This paper presents a method based on wavelet decomposition and phase space reconstruction with embedding dimensions for feature extraction from oxygen saturation measured in SpO2 signals. The proposed characteristics are the areas spanned by each wavelet level in the phase space calculated using the convex hull algorithm. These areas are then fed into a classifier that groups the patients in categories of AHI higher or lower than 5. The results show an accuracy of 93% using K-Nearest Neighbors (Knn), and 88.61% using Least Square Support Vector Machines (LS-SVM).","PeriodicalId":249670,"journal":{"name":"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Sleep Apnea Hypopnea Syndrome classification in SpO2 signals using wavelet decomposition and phase space reconstruction\",\"authors\":\"John F. Morales, C. Varon, Margot Deviaene, Pascal Borzée, D. Testelmans, B. Buyse, S. Huffel\",\"doi\":\"10.1109/BSN.2017.7936003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sleep Apnea Hypopnea Syndrome (SAHS) is a sleep disorder where patients experience multiple airflow cessations or reductions during the night. It is recognized as a common condition with a population prevalence of 1% to 6.5%. The Apnea Hypopnea Index (AHI) characterizes the severity of SAHS using signals obtained from Polysomnography (PSG); this requires the use of multiple sensors on the patient and an overnight hospital stay. The development of cheaper and more comfortable screening techniques involving wearable devices is, therefore, desirable. This paper presents a method based on wavelet decomposition and phase space reconstruction with embedding dimensions for feature extraction from oxygen saturation measured in SpO2 signals. The proposed characteristics are the areas spanned by each wavelet level in the phase space calculated using the convex hull algorithm. These areas are then fed into a classifier that groups the patients in categories of AHI higher or lower than 5. The results show an accuracy of 93% using K-Nearest Neighbors (Knn), and 88.61% using Least Square Support Vector Machines (LS-SVM).\",\"PeriodicalId\":249670,\"journal\":{\"name\":\"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2017.7936003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2017.7936003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sleep Apnea Hypopnea Syndrome classification in SpO2 signals using wavelet decomposition and phase space reconstruction
Sleep Apnea Hypopnea Syndrome (SAHS) is a sleep disorder where patients experience multiple airflow cessations or reductions during the night. It is recognized as a common condition with a population prevalence of 1% to 6.5%. The Apnea Hypopnea Index (AHI) characterizes the severity of SAHS using signals obtained from Polysomnography (PSG); this requires the use of multiple sensors on the patient and an overnight hospital stay. The development of cheaper and more comfortable screening techniques involving wearable devices is, therefore, desirable. This paper presents a method based on wavelet decomposition and phase space reconstruction with embedding dimensions for feature extraction from oxygen saturation measured in SpO2 signals. The proposed characteristics are the areas spanned by each wavelet level in the phase space calculated using the convex hull algorithm. These areas are then fed into a classifier that groups the patients in categories of AHI higher or lower than 5. The results show an accuracy of 93% using K-Nearest Neighbors (Knn), and 88.61% using Least Square Support Vector Machines (LS-SVM).