{"title":"数学模型检验的实现技术","authors":"W. Schreiner","doi":"10.1109/SYNASC57785.2022.00011","DOIUrl":null,"url":null,"abstract":"We report on the various implementation techniques that the model checker RISCAL applies for the formal verification of mathematical algorithms and theorems in finite models of configurable sizes. Originally, RISCAL was based entirely on semantic evaluation where every syntactic phrase is translated to an executable version of its denotational semantics, which allows to execute algorithms and to evaluate first-order formulas. Later this was extended by a translation of formulas from the RISCAL language to an SMT-LIB logic, which enables their decision by the application of external SMT (satisfiability modulo theories) solvers. Subsequently, semantic evaluation was extended to nondeterministic/concurrent transition systems which facilitates the verification of invariance properties by state space exploration; this was recently generalized to an automatabased technique for verifying system specifications expressed in a LTL (linear temporal logic) extension of the RISCAL formula language. Recently, the checking capabilities of RISCAL have been complemented (via an embedding of the RISCTP theorem proving interface) by capabilities for verifying formulas in domains of arbitrary size with the help of external theorem provers. We briefly sketch these techniques and discuss their purpose and relationship within the general problem area of algorithm specification and verification.","PeriodicalId":446065,"journal":{"name":"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation Techniques for Mathematical Model Checking\",\"authors\":\"W. Schreiner\",\"doi\":\"10.1109/SYNASC57785.2022.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on the various implementation techniques that the model checker RISCAL applies for the formal verification of mathematical algorithms and theorems in finite models of configurable sizes. Originally, RISCAL was based entirely on semantic evaluation where every syntactic phrase is translated to an executable version of its denotational semantics, which allows to execute algorithms and to evaluate first-order formulas. Later this was extended by a translation of formulas from the RISCAL language to an SMT-LIB logic, which enables their decision by the application of external SMT (satisfiability modulo theories) solvers. Subsequently, semantic evaluation was extended to nondeterministic/concurrent transition systems which facilitates the verification of invariance properties by state space exploration; this was recently generalized to an automatabased technique for verifying system specifications expressed in a LTL (linear temporal logic) extension of the RISCAL formula language. Recently, the checking capabilities of RISCAL have been complemented (via an embedding of the RISCTP theorem proving interface) by capabilities for verifying formulas in domains of arbitrary size with the help of external theorem provers. We briefly sketch these techniques and discuss their purpose and relationship within the general problem area of algorithm specification and verification.\",\"PeriodicalId\":446065,\"journal\":{\"name\":\"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC57785.2022.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC57785.2022.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了模型检查器RISCAL应用于可配置大小的有限模型中数学算法和定理的形式化验证的各种实现技术。最初,RISCAL完全基于语义计算,其中每个语法短语都被翻译为其指称语义的可执行版本,这允许执行算法和计算一阶公式。后来,通过将公式从RISCAL语言翻译为SMT- lib逻辑,扩展了这一点,这使得它们能够通过应用外部SMT(可满足模理论)求解器进行决策。随后,将语义评估扩展到不确定/并发转换系统中,通过状态空间探索来验证不变性;这最近被推广为一种基于自动化的技术,用于验证用RISCAL公式语言的LTL(线性时间逻辑)扩展表示的系统规范。最近,RISCAL的检验能力(通过嵌入RISCTP定理证明接口)被在外部定理证明器的帮助下在任意大小的域中验证公式的能力所补充。我们简要概述了这些技术,并讨论了它们在算法规范和验证的一般问题领域中的目的和关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementation Techniques for Mathematical Model Checking
We report on the various implementation techniques that the model checker RISCAL applies for the formal verification of mathematical algorithms and theorems in finite models of configurable sizes. Originally, RISCAL was based entirely on semantic evaluation where every syntactic phrase is translated to an executable version of its denotational semantics, which allows to execute algorithms and to evaluate first-order formulas. Later this was extended by a translation of formulas from the RISCAL language to an SMT-LIB logic, which enables their decision by the application of external SMT (satisfiability modulo theories) solvers. Subsequently, semantic evaluation was extended to nondeterministic/concurrent transition systems which facilitates the verification of invariance properties by state space exploration; this was recently generalized to an automatabased technique for verifying system specifications expressed in a LTL (linear temporal logic) extension of the RISCAL formula language. Recently, the checking capabilities of RISCAL have been complemented (via an embedding of the RISCTP theorem proving interface) by capabilities for verifying formulas in domains of arbitrary size with the help of external theorem provers. We briefly sketch these techniques and discuss their purpose and relationship within the general problem area of algorithm specification and verification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FERPModels: A Certification Framework for Expansion-Based QBF Solving Reducing Adversarial Vulnerability Using GANs Fully-adaptive Model for Broadcasting with Universal Lists An Ant Colony Optimisation Approach to the Densest k-Subgraph Problem* IPO-MAXSAT: The In-Parameter-Order Strategy combined with MaxSAT solving for Covering Array Generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1