SimFS:模拟数据虚拟化文件系统接口

S. D. Girolamo, Pirmin Schmid, T. Schulthess, T. Hoefler
{"title":"SimFS:模拟数据虚拟化文件系统接口","authors":"S. D. Girolamo, Pirmin Schmid, T. Schulthess, T. Hoefler","doi":"10.1109/IPDPS.2019.00071","DOIUrl":null,"url":null,"abstract":"Nowadays simulations can produce petabytes of data to be stored in parallel filesystems or large-scale databases. This data is accessed over the course of decades often by thousands of analysts and scientists. However, storing these volumes of data for long periods of time is not cost effective and, in some cases, practically impossible. We propose to transparently virtualize the simulation data, relaxing the storage requirements by not storing the full output and re-simulating the missing data on demand. We develop SimFS, a file system interface that exposes a virtualized view of the simulation output to the analysis applications and manages the re-simulations. SimFS monitors the access patterns of the analysis applications in order to (1) decide the data to keep stored for faster accesses and (2) to employ prefetching strategies to reduce the access time of missing data. Virtualizing simulation data allows us to trade storage for computation: this paradigm becomes similar to traditional on-disk analysis (all data is stored) or in situ (no data is stored) according with the storage resources that are assigned to SimFS. Overall, by exploiting the growing computing power and relaxing the storage capacity requirements, SimFS offers a viable path towards exa-scale simulations.","PeriodicalId":403406,"journal":{"name":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"SimFS: A Simulation Data Virtualizing File System Interface\",\"authors\":\"S. D. Girolamo, Pirmin Schmid, T. Schulthess, T. Hoefler\",\"doi\":\"10.1109/IPDPS.2019.00071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays simulations can produce petabytes of data to be stored in parallel filesystems or large-scale databases. This data is accessed over the course of decades often by thousands of analysts and scientists. However, storing these volumes of data for long periods of time is not cost effective and, in some cases, practically impossible. We propose to transparently virtualize the simulation data, relaxing the storage requirements by not storing the full output and re-simulating the missing data on demand. We develop SimFS, a file system interface that exposes a virtualized view of the simulation output to the analysis applications and manages the re-simulations. SimFS monitors the access patterns of the analysis applications in order to (1) decide the data to keep stored for faster accesses and (2) to employ prefetching strategies to reduce the access time of missing data. Virtualizing simulation data allows us to trade storage for computation: this paradigm becomes similar to traditional on-disk analysis (all data is stored) or in situ (no data is stored) according with the storage resources that are assigned to SimFS. Overall, by exploiting the growing computing power and relaxing the storage capacity requirements, SimFS offers a viable path towards exa-scale simulations.\",\"PeriodicalId\":403406,\"journal\":{\"name\":\"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2019.00071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2019.00071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

如今,模拟可以产生pb级的数据,存储在并行文件系统或大型数据库中。这些数据在几十年的时间里经常被成千上万的分析师和科学家访问。然而,长时间存储这些数据量并不符合成本效益,在某些情况下,实际上是不可能的。我们建议透明地虚拟化模拟数据,通过不存储完整的输出来放松存储需求,并根据需要重新模拟缺失的数据。我们开发了SimFS,这是一个文件系统接口,它向分析应用程序公开模拟输出的虚拟视图并管理重新模拟。SimFS监视分析应用程序的访问模式,以便(1)决定保存哪些数据以实现更快的访问,(2)采用预取策略来减少丢失数据的访问时间。虚拟化模拟数据允许我们将存储交换为计算:根据分配给SimFS的存储资源,这种范式变得类似于传统的磁盘上分析(所有数据都存储)或原位分析(没有数据存储)。总的来说,通过利用不断增长的计算能力和放松存储容量要求,SimFS为超大规模模拟提供了一条可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SimFS: A Simulation Data Virtualizing File System Interface
Nowadays simulations can produce petabytes of data to be stored in parallel filesystems or large-scale databases. This data is accessed over the course of decades often by thousands of analysts and scientists. However, storing these volumes of data for long periods of time is not cost effective and, in some cases, practically impossible. We propose to transparently virtualize the simulation data, relaxing the storage requirements by not storing the full output and re-simulating the missing data on demand. We develop SimFS, a file system interface that exposes a virtualized view of the simulation output to the analysis applications and manages the re-simulations. SimFS monitors the access patterns of the analysis applications in order to (1) decide the data to keep stored for faster accesses and (2) to employ prefetching strategies to reduce the access time of missing data. Virtualizing simulation data allows us to trade storage for computation: this paradigm becomes similar to traditional on-disk analysis (all data is stored) or in situ (no data is stored) according with the storage resources that are assigned to SimFS. Overall, by exploiting the growing computing power and relaxing the storage capacity requirements, SimFS offers a viable path towards exa-scale simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed Weighted All Pairs Shortest Paths Through Pipelining SAFIRE: Scalable and Accurate Fault Injection for Parallel Multithreaded Applications Architecting Racetrack Memory Preshift through Pattern-Based Prediction Mechanisms Z-Dedup:A Case for Deduplicating Compressed Contents in Cloud Dual Pattern Compression Using Data-Preprocessing for Large-Scale GPU Architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1