希伯来语政治语料库中的表情符号识别与预测

Chaya Liebeskind
{"title":"希伯来语政治语料库中的表情符号识别与预测","authors":"Chaya Liebeskind","doi":"10.28945/4372","DOIUrl":null,"url":null,"abstract":"[This Proceedings paper was revised and published in the 2019 issue of the journal Issues in Informing Science and Information Technology, Volume 16]\n\nAim/Purpose: Any system that aims to address the task of modeling social media communication need to deal with the usage of emojis. Efficient prediction of the most likely emoji given the text of a message may help to improve different NLP tasks.\n\nBackground: We explore two tasks: emoji identification and emoji prediction. While emoji prediction is a classification task of predicting the emojis that appear in a given text message, emoji identification is the complementary preceding task of determining if a given text message includes emojies.\n\nMethodology: We adopt a supervised Machine Learning (ML) approach. We compare two text representation approaches, i.e., n-grams and character n-grams and analyze the contribution of additional metadata features to the classification.\n\nContribution: The task of emoji identification is novel. We extend the definition of the emoji prediction task by allowing to use not only the textual content but also meta-data analysis.\n\nFindings: Metadata improve the classification accuracy in the task of emoji identification. In the task of emoji prediction it is better to apply feature selection.\n\nRecommendations for Practitioners: In many of the cases the classifier decision seems fitter to the comment con-tent than the emoji that was chosen by the commentator. The classifier may be useful for emoji suggestion.\n\nRecommendations for Researchers: Explore character-based representations rather than word-based representations in the case of morphologically rich languages.\n\nImpact on Society: Improve the modeling of social media communication.\n\nFuture Research: We plan to address the multi-label setting of the emoji prediction task and to investigate the deep learning approach for both of our classification tasks.","PeriodicalId":249265,"journal":{"name":"Proceedings of the 2019 InSITE Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Emoji Identification and Prediction in Hebrew Political Corpus\",\"authors\":\"Chaya Liebeskind\",\"doi\":\"10.28945/4372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"[This Proceedings paper was revised and published in the 2019 issue of the journal Issues in Informing Science and Information Technology, Volume 16]\\n\\nAim/Purpose: Any system that aims to address the task of modeling social media communication need to deal with the usage of emojis. Efficient prediction of the most likely emoji given the text of a message may help to improve different NLP tasks.\\n\\nBackground: We explore two tasks: emoji identification and emoji prediction. While emoji prediction is a classification task of predicting the emojis that appear in a given text message, emoji identification is the complementary preceding task of determining if a given text message includes emojies.\\n\\nMethodology: We adopt a supervised Machine Learning (ML) approach. We compare two text representation approaches, i.e., n-grams and character n-grams and analyze the contribution of additional metadata features to the classification.\\n\\nContribution: The task of emoji identification is novel. We extend the definition of the emoji prediction task by allowing to use not only the textual content but also meta-data analysis.\\n\\nFindings: Metadata improve the classification accuracy in the task of emoji identification. In the task of emoji prediction it is better to apply feature selection.\\n\\nRecommendations for Practitioners: In many of the cases the classifier decision seems fitter to the comment con-tent than the emoji that was chosen by the commentator. The classifier may be useful for emoji suggestion.\\n\\nRecommendations for Researchers: Explore character-based representations rather than word-based representations in the case of morphologically rich languages.\\n\\nImpact on Society: Improve the modeling of social media communication.\\n\\nFuture Research: We plan to address the multi-label setting of the emoji prediction task and to investigate the deep learning approach for both of our classification tasks.\",\"PeriodicalId\":249265,\"journal\":{\"name\":\"Proceedings of the 2019 InSITE Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 InSITE Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28945/4372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 InSITE Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28945/4372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

[这篇论文被修订并发表在2019年的《信息科学与信息技术问题》杂志上,第16卷]目的/目的:任何旨在解决社交媒体沟通建模任务的系统都需要处理表情符号的使用。根据消息文本有效地预测最可能的表情符号可能有助于改进不同的NLP任务。背景:我们研究了两个任务:表情符号识别和表情符号预测。表情符号预测是一项分类任务,即预测给定文本信息中出现的表情符号,而表情符号识别是确定给定文本信息是否包含表情符号的补充任务。方法:我们采用监督机器学习(ML)方法。我们比较了两种文本表示方法,即n-grams和字符n-grams,并分析了额外的元数据特征对分类的贡献。贡献:表情符号识别的任务是新颖的。我们扩展了表情符号预测任务的定义,不仅允许使用文本内容,还允许使用元数据分析。发现:元数据提高了表情符号识别任务的分类准确率。在表情符号预测任务中,最好采用特征选择。对从业者的建议:在许多情况下,分类器的决定似乎比评论员选择的表情符号更适合评论内容。分类器可能对表情符号建议有用。对研究人员的建议:在形态学丰富的语言中,探索基于字符的表示,而不是基于单词的表示。对社会的影响:完善社交媒体传播的建模。未来研究:我们计划解决表情符号预测任务的多标签设置问题,并研究这两个分类任务的深度学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emoji Identification and Prediction in Hebrew Political Corpus
[This Proceedings paper was revised and published in the 2019 issue of the journal Issues in Informing Science and Information Technology, Volume 16] Aim/Purpose: Any system that aims to address the task of modeling social media communication need to deal with the usage of emojis. Efficient prediction of the most likely emoji given the text of a message may help to improve different NLP tasks. Background: We explore two tasks: emoji identification and emoji prediction. While emoji prediction is a classification task of predicting the emojis that appear in a given text message, emoji identification is the complementary preceding task of determining if a given text message includes emojies. Methodology: We adopt a supervised Machine Learning (ML) approach. We compare two text representation approaches, i.e., n-grams and character n-grams and analyze the contribution of additional metadata features to the classification. Contribution: The task of emoji identification is novel. We extend the definition of the emoji prediction task by allowing to use not only the textual content but also meta-data analysis. Findings: Metadata improve the classification accuracy in the task of emoji identification. In the task of emoji prediction it is better to apply feature selection. Recommendations for Practitioners: In many of the cases the classifier decision seems fitter to the comment con-tent than the emoji that was chosen by the commentator. The classifier may be useful for emoji suggestion. Recommendations for Researchers: Explore character-based representations rather than word-based representations in the case of morphologically rich languages. Impact on Society: Improve the modeling of social media communication. Future Research: We plan to address the multi-label setting of the emoji prediction task and to investigate the deep learning approach for both of our classification tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Impact of Contribution in Aid of Construction on Utility Dilapidated Infrastructure: Evidence from the State of Florida [Abstract] Emoji Identification and Prediction in Hebrew Political Corpus Transforming a First-year Accounting Course Using a Blended Learning Pathway Educational Technology in IT and Marketing Education - The Experience of Early Thai Educators [Abstract] Workshop: Keyword Discovery: Visualizing Your Topic in Research, Thesis and Dissertation Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1