基于可预测移动性的车辆众包中的高质量参与者招募

Zongjian He, Jiannong Cao, Xuefeng Liu
{"title":"基于可预测移动性的车辆众包中的高质量参与者招募","authors":"Zongjian He, Jiannong Cao, Xuefeng Liu","doi":"10.1109/INFOCOM.2015.7218644","DOIUrl":null,"url":null,"abstract":"The potential of crowdsourcing for complex problem solving has been revealed by smartphones. Nowadays, vehicles have also been increasingly adopted as participants in crowd-sourcing applications. Different from smartphones, vehicles have the distinct advantage of predictable mobility, which brings new insight into improving the crowdsourcing quality. Unfortunately, utilizing the predictable mobility in participant recruitment poses a new challenge of considering not only current location but also the future trajectories of participants. Therefore, existing participant recruitment algorithms that only use the current location may not perform well. In this paper, based on the predicted trajectory, we present a new participant recruitment strategy for vehicle-based crowdsourcing. This strategy guarantees that the system can perform well using the currently recruited participants for a period of time in the future. The participant recruitment problem is proven to be NP-complete, and we propose two algorithms, a greedy approximation and a genetic algorithm, to find the solution for different application scenarios. The performance of our algorithms is demonstrated with traffic trace dataset. The results show that our algorithms outperform some existing approaches in terms of the crowdsourcing quality.","PeriodicalId":342583,"journal":{"name":"2015 IEEE Conference on Computer Communications (INFOCOM)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"141","resultStr":"{\"title\":\"High quality participant recruitment in vehicle-based crowdsourcing using predictable mobility\",\"authors\":\"Zongjian He, Jiannong Cao, Xuefeng Liu\",\"doi\":\"10.1109/INFOCOM.2015.7218644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The potential of crowdsourcing for complex problem solving has been revealed by smartphones. Nowadays, vehicles have also been increasingly adopted as participants in crowd-sourcing applications. Different from smartphones, vehicles have the distinct advantage of predictable mobility, which brings new insight into improving the crowdsourcing quality. Unfortunately, utilizing the predictable mobility in participant recruitment poses a new challenge of considering not only current location but also the future trajectories of participants. Therefore, existing participant recruitment algorithms that only use the current location may not perform well. In this paper, based on the predicted trajectory, we present a new participant recruitment strategy for vehicle-based crowdsourcing. This strategy guarantees that the system can perform well using the currently recruited participants for a period of time in the future. The participant recruitment problem is proven to be NP-complete, and we propose two algorithms, a greedy approximation and a genetic algorithm, to find the solution for different application scenarios. The performance of our algorithms is demonstrated with traffic trace dataset. The results show that our algorithms outperform some existing approaches in terms of the crowdsourcing quality.\",\"PeriodicalId\":342583,\"journal\":{\"name\":\"2015 IEEE Conference on Computer Communications (INFOCOM)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"141\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Conference on Computer Communications (INFOCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOM.2015.7218644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computer Communications (INFOCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM.2015.7218644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 141

摘要

智能手机揭示了众包解决复杂问题的潜力。如今,车辆也越来越多地成为众包应用的参与者。与智能手机不同,汽车具有可预测移动性的明显优势,这为提高众包质量带来了新的见解。不幸的是,利用可预测的流动性在参与者招募中提出了一个新的挑战,即不仅要考虑参与者的当前位置,还要考虑参与者的未来轨迹。因此,现有的仅使用当前位置的参与者招聘算法可能表现不佳。本文基于预测轨迹,提出了一种新的基于车辆众包的参与者招募策略。这一策略保证了系统在未来一段时间内可以很好地使用当前招募的参与者。证明了参与者招募问题是np完全的,并提出了贪心逼近和遗传算法两种算法来寻找不同应用场景的解决方案。通过交通跟踪数据集验证了算法的性能。结果表明,我们的算法在众包质量方面优于现有的一些方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High quality participant recruitment in vehicle-based crowdsourcing using predictable mobility
The potential of crowdsourcing for complex problem solving has been revealed by smartphones. Nowadays, vehicles have also been increasingly adopted as participants in crowd-sourcing applications. Different from smartphones, vehicles have the distinct advantage of predictable mobility, which brings new insight into improving the crowdsourcing quality. Unfortunately, utilizing the predictable mobility in participant recruitment poses a new challenge of considering not only current location but also the future trajectories of participants. Therefore, existing participant recruitment algorithms that only use the current location may not perform well. In this paper, based on the predicted trajectory, we present a new participant recruitment strategy for vehicle-based crowdsourcing. This strategy guarantees that the system can perform well using the currently recruited participants for a period of time in the future. The participant recruitment problem is proven to be NP-complete, and we propose two algorithms, a greedy approximation and a genetic algorithm, to find the solution for different application scenarios. The performance of our algorithms is demonstrated with traffic trace dataset. The results show that our algorithms outperform some existing approaches in terms of the crowdsourcing quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ambient rendezvous: Energy-efficient neighbor discovery via acoustic sensing A-DCF: Design and implementation of delay and queue length based wireless MAC Original SYN: Finding machines hidden behind firewalls Supporting WiFi and LTE co-existence MadeCR: Correlation-based malware detection for cognitive radio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1