{"title":"基于可预测移动性的车辆众包中的高质量参与者招募","authors":"Zongjian He, Jiannong Cao, Xuefeng Liu","doi":"10.1109/INFOCOM.2015.7218644","DOIUrl":null,"url":null,"abstract":"The potential of crowdsourcing for complex problem solving has been revealed by smartphones. Nowadays, vehicles have also been increasingly adopted as participants in crowd-sourcing applications. Different from smartphones, vehicles have the distinct advantage of predictable mobility, which brings new insight into improving the crowdsourcing quality. Unfortunately, utilizing the predictable mobility in participant recruitment poses a new challenge of considering not only current location but also the future trajectories of participants. Therefore, existing participant recruitment algorithms that only use the current location may not perform well. In this paper, based on the predicted trajectory, we present a new participant recruitment strategy for vehicle-based crowdsourcing. This strategy guarantees that the system can perform well using the currently recruited participants for a period of time in the future. The participant recruitment problem is proven to be NP-complete, and we propose two algorithms, a greedy approximation and a genetic algorithm, to find the solution for different application scenarios. The performance of our algorithms is demonstrated with traffic trace dataset. The results show that our algorithms outperform some existing approaches in terms of the crowdsourcing quality.","PeriodicalId":342583,"journal":{"name":"2015 IEEE Conference on Computer Communications (INFOCOM)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"141","resultStr":"{\"title\":\"High quality participant recruitment in vehicle-based crowdsourcing using predictable mobility\",\"authors\":\"Zongjian He, Jiannong Cao, Xuefeng Liu\",\"doi\":\"10.1109/INFOCOM.2015.7218644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The potential of crowdsourcing for complex problem solving has been revealed by smartphones. Nowadays, vehicles have also been increasingly adopted as participants in crowd-sourcing applications. Different from smartphones, vehicles have the distinct advantage of predictable mobility, which brings new insight into improving the crowdsourcing quality. Unfortunately, utilizing the predictable mobility in participant recruitment poses a new challenge of considering not only current location but also the future trajectories of participants. Therefore, existing participant recruitment algorithms that only use the current location may not perform well. In this paper, based on the predicted trajectory, we present a new participant recruitment strategy for vehicle-based crowdsourcing. This strategy guarantees that the system can perform well using the currently recruited participants for a period of time in the future. The participant recruitment problem is proven to be NP-complete, and we propose two algorithms, a greedy approximation and a genetic algorithm, to find the solution for different application scenarios. The performance of our algorithms is demonstrated with traffic trace dataset. The results show that our algorithms outperform some existing approaches in terms of the crowdsourcing quality.\",\"PeriodicalId\":342583,\"journal\":{\"name\":\"2015 IEEE Conference on Computer Communications (INFOCOM)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"141\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Conference on Computer Communications (INFOCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOM.2015.7218644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computer Communications (INFOCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM.2015.7218644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High quality participant recruitment in vehicle-based crowdsourcing using predictable mobility
The potential of crowdsourcing for complex problem solving has been revealed by smartphones. Nowadays, vehicles have also been increasingly adopted as participants in crowd-sourcing applications. Different from smartphones, vehicles have the distinct advantage of predictable mobility, which brings new insight into improving the crowdsourcing quality. Unfortunately, utilizing the predictable mobility in participant recruitment poses a new challenge of considering not only current location but also the future trajectories of participants. Therefore, existing participant recruitment algorithms that only use the current location may not perform well. In this paper, based on the predicted trajectory, we present a new participant recruitment strategy for vehicle-based crowdsourcing. This strategy guarantees that the system can perform well using the currently recruited participants for a period of time in the future. The participant recruitment problem is proven to be NP-complete, and we propose two algorithms, a greedy approximation and a genetic algorithm, to find the solution for different application scenarios. The performance of our algorithms is demonstrated with traffic trace dataset. The results show that our algorithms outperform some existing approaches in terms of the crowdsourcing quality.