手势识别分类

Hind Ibrahim Mohammed, Bashar Ahmed Sultan, Khalid Hadi Hamee
{"title":"手势识别分类","authors":"Hind Ibrahim Mohammed, Bashar Ahmed Sultan, Khalid Hadi Hamee","doi":"10.53430/ijeru.2022.3.2.0053","DOIUrl":null,"url":null,"abstract":"The use of hand gestures for human-machine interaction offers an enticing alternative to bulky interface devices. The current study discusses the classification of gestures in real time and aims to create an algorithm capable of classifying gestural control commands accurately. For the classification of a gesture vocabulary of eight dynamic hand gestures, two separate classifiers were created. The established classifiers were: K-means + rule-based classifier and classifier of to test the accuracy of classification recognition in which a test set of 180 trajectories was categorized, an experiment was conducted. The accuracies obtained for the K-means and Learning classifier systems( LCS ) classifiers, respectively, are 90 and 94 percent.","PeriodicalId":423246,"journal":{"name":"International Journal of Engineering Research Updates","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hand gestures recognition classification\",\"authors\":\"Hind Ibrahim Mohammed, Bashar Ahmed Sultan, Khalid Hadi Hamee\",\"doi\":\"10.53430/ijeru.2022.3.2.0053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of hand gestures for human-machine interaction offers an enticing alternative to bulky interface devices. The current study discusses the classification of gestures in real time and aims to create an algorithm capable of classifying gestural control commands accurately. For the classification of a gesture vocabulary of eight dynamic hand gestures, two separate classifiers were created. The established classifiers were: K-means + rule-based classifier and classifier of to test the accuracy of classification recognition in which a test set of 180 trajectories was categorized, an experiment was conducted. The accuracies obtained for the K-means and Learning classifier systems( LCS ) classifiers, respectively, are 90 and 94 percent.\",\"PeriodicalId\":423246,\"journal\":{\"name\":\"International Journal of Engineering Research Updates\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Research Updates\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53430/ijeru.2022.3.2.0053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Research Updates","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53430/ijeru.2022.3.2.0053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在人机交互中使用手势为笨重的界面设备提供了一个诱人的选择。当前的研究讨论了实时手势的分类,旨在创建一种能够准确分类手势控制命令的算法。为了对八种动态手势的手势词汇进行分类,建立了两个独立的分类器。所建立的分类器为:K-means +基于规则的分类器和为测试分类识别准确率的分类器,对180条轨迹的测试集进行了分类实验。K-means和学习分类器系统(LCS)分类器获得的准确率分别为90%和94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hand gestures recognition classification
The use of hand gestures for human-machine interaction offers an enticing alternative to bulky interface devices. The current study discusses the classification of gestures in real time and aims to create an algorithm capable of classifying gestural control commands accurately. For the classification of a gesture vocabulary of eight dynamic hand gestures, two separate classifiers were created. The established classifiers were: K-means + rule-based classifier and classifier of to test the accuracy of classification recognition in which a test set of 180 trajectories was categorized, an experiment was conducted. The accuracies obtained for the K-means and Learning classifier systems( LCS ) classifiers, respectively, are 90 and 94 percent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Utilizing predictive analytics to enhance supply chain efficiency and reduce operational costs As a solution during COVID-19, mandarin language learning system development to support HSK certification exams Electrical load flow analysis of Auchi distribution network without load shedding Investigating the effect of fabric design on properties of different weft knit fabrics Design of automated reader for blind person
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1