工作负载驱动的混合现实人机通信调制

Leanne M. Hirshfield, T. Williams, Natalie M. Sommer, Trevor Grant, Senem Velipasalar Gursoy
{"title":"工作负载驱动的混合现实人机通信调制","authors":"Leanne M. Hirshfield, T. Williams, Natalie M. Sommer, Trevor Grant, Senem Velipasalar Gursoy","doi":"10.1145/3279810.3279848","DOIUrl":null,"url":null,"abstract":"In this work we explore how Augmented Reality annotations can be used as a form of Mixed Reality gesture, how neurophysiological measurements can inform the decision as to whether or not to use such gestures, and whether and how to adapt language when using such gestures. In this paper, we propose a preliminary investigation of how decisions regarding robot-to-human communication modality in mixed reality environments might be made on the basis of humans' perceptual and cognitive states. Specifically, we propose to use brain data acquired with high-density functional near-infrared spectroscopy (fNIRS) to measure the neural correlates of cognitive and emotional states with particular relevance to adaptive human-robot interaction (HRI). In this paper we describe several states of interest that fNIRS is well suited to measure and that have direct implications to HRI adaptations and we leverage a framework developed in our prior work to explore how different neurophysiological measures could inform the selection of different communication strategies. We then describe results from a feasibility experiment where multilabel Convolutional Long Short Term Memory Networks were trained to classify the target mental states of 10 participants and we discuss a research agenda for adaptive human-robot teams based on our findings.","PeriodicalId":326513,"journal":{"name":"Proceedings of the Workshop on Modeling Cognitive Processes from Multimodal Data","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Workload-driven modulation of mixed-reality robot-human communication\",\"authors\":\"Leanne M. Hirshfield, T. Williams, Natalie M. Sommer, Trevor Grant, Senem Velipasalar Gursoy\",\"doi\":\"10.1145/3279810.3279848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we explore how Augmented Reality annotations can be used as a form of Mixed Reality gesture, how neurophysiological measurements can inform the decision as to whether or not to use such gestures, and whether and how to adapt language when using such gestures. In this paper, we propose a preliminary investigation of how decisions regarding robot-to-human communication modality in mixed reality environments might be made on the basis of humans' perceptual and cognitive states. Specifically, we propose to use brain data acquired with high-density functional near-infrared spectroscopy (fNIRS) to measure the neural correlates of cognitive and emotional states with particular relevance to adaptive human-robot interaction (HRI). In this paper we describe several states of interest that fNIRS is well suited to measure and that have direct implications to HRI adaptations and we leverage a framework developed in our prior work to explore how different neurophysiological measures could inform the selection of different communication strategies. We then describe results from a feasibility experiment where multilabel Convolutional Long Short Term Memory Networks were trained to classify the target mental states of 10 participants and we discuss a research agenda for adaptive human-robot teams based on our findings.\",\"PeriodicalId\":326513,\"journal\":{\"name\":\"Proceedings of the Workshop on Modeling Cognitive Processes from Multimodal Data\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Workshop on Modeling Cognitive Processes from Multimodal Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3279810.3279848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Modeling Cognitive Processes from Multimodal Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3279810.3279848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在这项工作中,我们探讨了如何将增强现实注释用作混合现实手势的一种形式,神经生理测量如何告知是否使用此类手势的决定,以及在使用此类手势时是否以及如何适应语言。在本文中,我们提出了一个关于混合现实环境中如何根据人类的感知和认知状态做出关于机器人与人类通信方式的决策的初步研究。具体来说,我们建议使用高密度功能近红外光谱(fNIRS)获得的大脑数据来测量认知和情绪状态的神经相关性,特别是与自适应人机交互(HRI)相关的神经相关性。在本文中,我们描述了几个感兴趣的状态,fNIRS非常适合测量,并且对HRI适应有直接影响,我们利用我们之前工作中开发的框架来探索不同的神经生理测量如何为不同的沟通策略的选择提供信息。然后,我们描述了一个可行性实验的结果,在这个实验中,我们训练了多标签卷积长短期记忆网络来对10名参与者的目标心理状态进行分类,并根据我们的发现讨论了自适应人机团队的研究议程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Workload-driven modulation of mixed-reality robot-human communication
In this work we explore how Augmented Reality annotations can be used as a form of Mixed Reality gesture, how neurophysiological measurements can inform the decision as to whether or not to use such gestures, and whether and how to adapt language when using such gestures. In this paper, we propose a preliminary investigation of how decisions regarding robot-to-human communication modality in mixed reality environments might be made on the basis of humans' perceptual and cognitive states. Specifically, we propose to use brain data acquired with high-density functional near-infrared spectroscopy (fNIRS) to measure the neural correlates of cognitive and emotional states with particular relevance to adaptive human-robot interaction (HRI). In this paper we describe several states of interest that fNIRS is well suited to measure and that have direct implications to HRI adaptations and we leverage a framework developed in our prior work to explore how different neurophysiological measures could inform the selection of different communication strategies. We then describe results from a feasibility experiment where multilabel Convolutional Long Short Term Memory Networks were trained to classify the target mental states of 10 participants and we discuss a research agenda for adaptive human-robot teams based on our findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rule-based learning for eye movement type detection Predicting group satisfaction in meeting discussions Multimodal approach for cognitive task performance prediction from body postures, facial expressions and EEG signal The role of emotion in problem solving: first results from observing chess Proceedings of the Workshop on Modeling Cognitive Processes from Multimodal Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1