步态模式奇异谱分析

D. Jarchi, Guang-Zhong Yang
{"title":"步态模式奇异谱分析","authors":"D. Jarchi, Guang-Zhong Yang","doi":"10.1109/BSN.2013.6575492","DOIUrl":null,"url":null,"abstract":"This paper proposes a new approach to gait pattern analysis based on acceleration signals during different walking conditions. Instead of applying traditional classification techniques, the proposed method looks into the characteristics of acceleration signals. Filtering and template matching methods based on singular spectrum analysis (SSA) and longest common subsequence algorithm (LCSS) have been used. The method has been used to discriminate walking downstairs, level walking and walking upstairs using 10 healthy subjects. The results suggest that the proposed method gives new insight into quantitative aspects of gait patterns.","PeriodicalId":138242,"journal":{"name":"2013 IEEE International Conference on Body Sensor Networks","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Singular spectrum analysis for gait patterns\",\"authors\":\"D. Jarchi, Guang-Zhong Yang\",\"doi\":\"10.1109/BSN.2013.6575492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new approach to gait pattern analysis based on acceleration signals during different walking conditions. Instead of applying traditional classification techniques, the proposed method looks into the characteristics of acceleration signals. Filtering and template matching methods based on singular spectrum analysis (SSA) and longest common subsequence algorithm (LCSS) have been used. The method has been used to discriminate walking downstairs, level walking and walking upstairs using 10 healthy subjects. The results suggest that the proposed method gives new insight into quantitative aspects of gait patterns.\",\"PeriodicalId\":138242,\"journal\":{\"name\":\"2013 IEEE International Conference on Body Sensor Networks\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Body Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2013.6575492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2013.6575492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于不同行走状态下加速度信号的步态模式分析方法。与传统的分类方法不同,该方法着眼于加速度信号的特征。采用了基于奇异谱分析(SSA)和最长公共子序列算法(LCSS)的滤波和模板匹配方法。采用该方法对10名健康受试者进行了下楼行走、水平行走和上楼行走的区分。结果表明,所提出的方法为步态模式的定量方面提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Singular spectrum analysis for gait patterns
This paper proposes a new approach to gait pattern analysis based on acceleration signals during different walking conditions. Instead of applying traditional classification techniques, the proposed method looks into the characteristics of acceleration signals. Filtering and template matching methods based on singular spectrum analysis (SSA) and longest common subsequence algorithm (LCSS) have been used. The method has been used to discriminate walking downstairs, level walking and walking upstairs using 10 healthy subjects. The results suggest that the proposed method gives new insight into quantitative aspects of gait patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-person vision-based head detector for markerless human motion capture Towards estimation of front-crawl energy expenditure using the wearable aquatic movement analysis system (WAMAS) A study on instance-based learning with reduced training prototypes for device-context-independent activity recognition on a mobile phone A low power miniaturized CMOS-based continuous glucose monitoring system Multi-channel pulse oximetry for wearable physiological monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1