求解测试集最小化问题的量子启发遗传算法

Hager Hussein, A. Younes, W. Abdelmoez
{"title":"求解测试集最小化问题的量子启发遗传算法","authors":"Hager Hussein, A. Younes, W. Abdelmoez","doi":"10.37394/23205.2020.19.20","DOIUrl":null,"url":null,"abstract":"Test Suite Minimization problem is a nondeterministic polynomial time (NP) complete problem insoftware engineering that has a special importance in software testing. In this problem, a subset with a minimalsize that contains a number of test cases that cover all the test requirements should be found. A brute­forceapproach to solving this problem is to assume a size for the minimal subset and then search to find if there is asubset of test cases with the assumed size that solves the problem. If not, the assumed minimal size is graduallyincremented, and the search is repeated. In this paper, a quantum­inspired genetic algorithm (QIGA) will beproposed to solve this problem. In it, quantum superposition, quantum rotation and quantum measurement willbe used in an evolutionary algorithm. The paper will show that the adopted quantum techniques can speed upthe convergence of the classical genetic algorithm. The proposed method has an advantage in that it reduces theassumed minimal number of test cases using quantum measurements, which makes it able to discover the minimalnumber of test cases without any prior assumptions.","PeriodicalId":332148,"journal":{"name":"WSEAS TRANSACTIONS ON COMPUTERS","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantum­-Inspired Genetic Algorithm for Solving the Test Suite Minimization Problem\",\"authors\":\"Hager Hussein, A. Younes, W. Abdelmoez\",\"doi\":\"10.37394/23205.2020.19.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Test Suite Minimization problem is a nondeterministic polynomial time (NP) complete problem insoftware engineering that has a special importance in software testing. In this problem, a subset with a minimalsize that contains a number of test cases that cover all the test requirements should be found. A brute­forceapproach to solving this problem is to assume a size for the minimal subset and then search to find if there is asubset of test cases with the assumed size that solves the problem. If not, the assumed minimal size is graduallyincremented, and the search is repeated. In this paper, a quantum­inspired genetic algorithm (QIGA) will beproposed to solve this problem. In it, quantum superposition, quantum rotation and quantum measurement willbe used in an evolutionary algorithm. The paper will show that the adopted quantum techniques can speed upthe convergence of the classical genetic algorithm. The proposed method has an advantage in that it reduces theassumed minimal number of test cases using quantum measurements, which makes it able to discover the minimalnumber of test cases without any prior assumptions.\",\"PeriodicalId\":332148,\"journal\":{\"name\":\"WSEAS TRANSACTIONS ON COMPUTERS\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS TRANSACTIONS ON COMPUTERS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23205.2020.19.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON COMPUTERS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23205.2020.19.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

测试集最小化问题是软件工程中的一个非确定性多项式时间完备问题,在软件测试中具有特殊的重要性。在这个问题中,应该找到一个包含许多覆盖所有测试需求的测试用例的最小子集。解决这个问题的一种蛮力方法是假设最小子集的大小,然后搜索是否存在具有假设大小的测试用例子集来解决问题。如果没有,则假设的最小大小逐渐增加,并重复搜索。本文将提出一种量子启发遗传算法(QIGA)来解决这一问题。在其中,量子叠加,量子旋转和量子测量将在进化算法中使用。本文将证明采用量子技术可以加快经典遗传算法的收敛速度。所提出的方法的优点在于它减少了使用量子测量的最小测试用例数量,这使得它能够在没有任何先前假设的情况下发现最小数量的测试用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum­-Inspired Genetic Algorithm for Solving the Test Suite Minimization Problem
Test Suite Minimization problem is a nondeterministic polynomial time (NP) complete problem insoftware engineering that has a special importance in software testing. In this problem, a subset with a minimalsize that contains a number of test cases that cover all the test requirements should be found. A brute­forceapproach to solving this problem is to assume a size for the minimal subset and then search to find if there is asubset of test cases with the assumed size that solves the problem. If not, the assumed minimal size is graduallyincremented, and the search is repeated. In this paper, a quantum­inspired genetic algorithm (QIGA) will beproposed to solve this problem. In it, quantum superposition, quantum rotation and quantum measurement willbe used in an evolutionary algorithm. The paper will show that the adopted quantum techniques can speed upthe convergence of the classical genetic algorithm. The proposed method has an advantage in that it reduces theassumed minimal number of test cases using quantum measurements, which makes it able to discover the minimalnumber of test cases without any prior assumptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Medical Image Classification using a Many to Many Relation, Multilayered Fuzzy Systems and AI Aspects of Symmetry in Petri Nets Chaos in Order: Applying ML, NLP, and Chaos Theory in Open Source Intelligence for Counter-Terrorism Combinatorial Optimization of Engineering Systems based on Diagrammatic Design Federated Learning: Attacks and Defenses, Rewards, Energy Efficiency: Past, Present and Future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1