一种高效的基于深度卷积网络的医学图像分类算法:以癌症病理为例

Dahdouh Yousra, A. Boudhir, M. Ahmed
{"title":"一种高效的基于深度卷积网络的医学图像分类算法:以癌症病理为例","authors":"Dahdouh Yousra, A. Boudhir, M. Ahmed","doi":"10.1145/3386723.3387896","DOIUrl":null,"url":null,"abstract":"Automatic classification of medical images especially of tissue images is an important task in computer aided diagnosis (CAD) systems. Deep learning methods such as convolutional networks (ConvNets) outperform other state of-the-art methods in images classification tasks. This article describes an accurate and efficient algorithms for this challenging problem, and aims to present different convolutional neural networks to classify the tissue images. first, we built a model that consist of feature extraction and the classification with simple CNN, the second model consist of a CNN as feature extractor by removing the classification layers and using the activations of the last fully connected layer to train Random Forest, and the last one using transfer learning --Fine-Tuning-- pre-trained CNN \"DenseNet201\". Finally, we have evaluated our models using three metrics: accuracy, Precision and F1 Score.","PeriodicalId":139072,"journal":{"name":"Proceedings of the 3rd International Conference on Networking, Information Systems & Security","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient Algorithm for medical image classification using Deep Convolutional Network: Case of Cancer Pathology\",\"authors\":\"Dahdouh Yousra, A. Boudhir, M. Ahmed\",\"doi\":\"10.1145/3386723.3387896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic classification of medical images especially of tissue images is an important task in computer aided diagnosis (CAD) systems. Deep learning methods such as convolutional networks (ConvNets) outperform other state of-the-art methods in images classification tasks. This article describes an accurate and efficient algorithms for this challenging problem, and aims to present different convolutional neural networks to classify the tissue images. first, we built a model that consist of feature extraction and the classification with simple CNN, the second model consist of a CNN as feature extractor by removing the classification layers and using the activations of the last fully connected layer to train Random Forest, and the last one using transfer learning --Fine-Tuning-- pre-trained CNN \\\"DenseNet201\\\". Finally, we have evaluated our models using three metrics: accuracy, Precision and F1 Score.\",\"PeriodicalId\":139072,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Networking, Information Systems & Security\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Networking, Information Systems & Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3386723.3387896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Networking, Information Systems & Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386723.3387896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

医学图像尤其是组织图像的自动分类是计算机辅助诊断(CAD)系统中的一项重要任务。卷积网络(ConvNets)等深度学习方法在图像分类任务中优于其他最先进的方法。本文描述了一种准确有效的算法来解决这一具有挑战性的问题,并旨在提出不同的卷积神经网络来对组织图像进行分类。首先,我们用简单的CNN建立了一个由特征提取和分类组成的模型,第二个模型由CNN作为特征提取器组成,通过去除分类层并使用最后一个完全连接层的激活来训练随机森林,最后一个模型使用迁移学习-微调-预训练CNN“DenseNet201”。最后,我们使用三个指标来评估我们的模型:准确性、精度和F1分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An efficient Algorithm for medical image classification using Deep Convolutional Network: Case of Cancer Pathology
Automatic classification of medical images especially of tissue images is an important task in computer aided diagnosis (CAD) systems. Deep learning methods such as convolutional networks (ConvNets) outperform other state of-the-art methods in images classification tasks. This article describes an accurate and efficient algorithms for this challenging problem, and aims to present different convolutional neural networks to classify the tissue images. first, we built a model that consist of feature extraction and the classification with simple CNN, the second model consist of a CNN as feature extractor by removing the classification layers and using the activations of the last fully connected layer to train Random Forest, and the last one using transfer learning --Fine-Tuning-- pre-trained CNN "DenseNet201". Finally, we have evaluated our models using three metrics: accuracy, Precision and F1 Score.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive-MIMO Configuration of Multipolarized ULA and UCA in 5G Wireless Communications Enhanced Duplicate Count Strategy: Towards New Algorithms to Improve Duplicate Detection Sensors Transposing Technique for Minimizing the Path Loss Effect and Enhancement of Battery Lifetime in Wireless Body Area Sensor Networks A Survey of Intrusion Detection Algorithm in VANET A Review on Cybersecurity: Challenges & Emerging Threats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1