优化空间数据库

Anda Belciu, Stefan Olaru
{"title":"优化空间数据库","authors":"Anda Belciu, Stefan Olaru","doi":"10.2139/ssrn.1800758","DOIUrl":null,"url":null,"abstract":"This paper describes the best way to improve the optimization of spatial databases: through spatial indexes. The most commune and utilized spatial indexes are R-tree and Quadtree and they are presented, analyzed and compared in this paper. Also there are given a few examples of queries that run in Oracle Spatial and are being supported by an R-tree spatial index. Spatial databases offer special features that can be very helpful when needing to represent such data. But in terms of storage and time costs, spatial data can require a lot of resources. This is why optimizing the database is one of the most important aspects when working with large volumes of data.","PeriodicalId":384078,"journal":{"name":"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Optimizing Spatial Databases\",\"authors\":\"Anda Belciu, Stefan Olaru\",\"doi\":\"10.2139/ssrn.1800758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the best way to improve the optimization of spatial databases: through spatial indexes. The most commune and utilized spatial indexes are R-tree and Quadtree and they are presented, analyzed and compared in this paper. Also there are given a few examples of queries that run in Oracle Spatial and are being supported by an R-tree spatial index. Spatial databases offer special features that can be very helpful when needing to represent such data. But in terms of storage and time costs, spatial data can require a lot of resources. This is why optimizing the database is one of the most important aspects when working with large volumes of data.\",\"PeriodicalId\":384078,\"journal\":{\"name\":\"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1800758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1800758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文描述了提高空间数据库优化的最佳方法:通过空间索引。本文对r树和四叉树这两种空间指标进行了介绍、分析和比较。此外,还给出了一些在Oracle Spatial中运行的查询示例,这些查询由R-tree空间索引支持。空间数据库提供了一些特殊的特性,在需要表示此类数据时非常有用。但就存储和时间成本而言,空间数据可能需要大量资源。这就是为什么在处理大量数据时,优化数据库是最重要的方面之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing Spatial Databases
This paper describes the best way to improve the optimization of spatial databases: through spatial indexes. The most commune and utilized spatial indexes are R-tree and Quadtree and they are presented, analyzed and compared in this paper. Also there are given a few examples of queries that run in Oracle Spatial and are being supported by an R-tree spatial index. Spatial databases offer special features that can be very helpful when needing to represent such data. But in terms of storage and time costs, spatial data can require a lot of resources. This is why optimizing the database is one of the most important aspects when working with large volumes of data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural Estimation Combining Micro and Macro Data Monetary Policy under Data Uncertainty: Interest-Rate Smoothing from a Cross-Country Perspective Nudging Towards Data Equity: The Role of Stewardship and Fiduciaries in the Digital Economy Re-Engineering Key National Economic Indicators Quant Research Ideas to Test for ETF Option and Equity Markets in China and Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1