{"title":"基于LSF和粒子群算法的自治微电网分布式发电机优化配置与规模研究","authors":"M. Anand, W. Ongsakul, J. Singh, K. Sudhesh","doi":"10.1109/ENERGYECONOMICS.2015.7235097","DOIUrl":null,"url":null,"abstract":"The future power distribution system which aims for an intensive penetration of Distributed generators (DGs) makes the power system operation and planning more challenging. This paper investigates the effectiveness of different methods for optimal allocation and sizing of DGs in autonomous and non-autonomous micro-grid modes based on the voltage profile, power losses, total DG size and reliability. In the proposed work initially, an effective power flow based loss sensitivity factor (LSF) method and active power injection based LSF method for DG allocation are compared in non-autonomous micro-grid mode. After siting DGs, LSF based optimal sizing has been executed in non-autonomous mode micro-grid operation. Later, the micro-grid has been converted into autonomous mode based on the optimal sizing and siting of DGs in non-autonomous mode operation. Additionally, the obtained results have been improved by PSO-TVIW based sizing method. The proposed methodology is adopted in standard IEEE 33 bus radial system which has been converted into autonomous micro-grid for verification.","PeriodicalId":130355,"journal":{"name":"2015 International Conference on Energy Economics and Environment (ICEEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimal allocation and sizing of distributed generators in autonomous microgrids based on LSF and PSO\",\"authors\":\"M. Anand, W. Ongsakul, J. Singh, K. Sudhesh\",\"doi\":\"10.1109/ENERGYECONOMICS.2015.7235097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The future power distribution system which aims for an intensive penetration of Distributed generators (DGs) makes the power system operation and planning more challenging. This paper investigates the effectiveness of different methods for optimal allocation and sizing of DGs in autonomous and non-autonomous micro-grid modes based on the voltage profile, power losses, total DG size and reliability. In the proposed work initially, an effective power flow based loss sensitivity factor (LSF) method and active power injection based LSF method for DG allocation are compared in non-autonomous micro-grid mode. After siting DGs, LSF based optimal sizing has been executed in non-autonomous mode micro-grid operation. Later, the micro-grid has been converted into autonomous mode based on the optimal sizing and siting of DGs in non-autonomous mode operation. Additionally, the obtained results have been improved by PSO-TVIW based sizing method. The proposed methodology is adopted in standard IEEE 33 bus radial system which has been converted into autonomous micro-grid for verification.\",\"PeriodicalId\":130355,\"journal\":{\"name\":\"2015 International Conference on Energy Economics and Environment (ICEEE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Energy Economics and Environment (ICEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ENERGYECONOMICS.2015.7235097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Energy Economics and Environment (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENERGYECONOMICS.2015.7235097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal allocation and sizing of distributed generators in autonomous microgrids based on LSF and PSO
The future power distribution system which aims for an intensive penetration of Distributed generators (DGs) makes the power system operation and planning more challenging. This paper investigates the effectiveness of different methods for optimal allocation and sizing of DGs in autonomous and non-autonomous micro-grid modes based on the voltage profile, power losses, total DG size and reliability. In the proposed work initially, an effective power flow based loss sensitivity factor (LSF) method and active power injection based LSF method for DG allocation are compared in non-autonomous micro-grid mode. After siting DGs, LSF based optimal sizing has been executed in non-autonomous mode micro-grid operation. Later, the micro-grid has been converted into autonomous mode based on the optimal sizing and siting of DGs in non-autonomous mode operation. Additionally, the obtained results have been improved by PSO-TVIW based sizing method. The proposed methodology is adopted in standard IEEE 33 bus radial system which has been converted into autonomous micro-grid for verification.