简单的部分恢复传感器数据输入方法研究

C. Sydora, Johannes Jung, I. Nikolaidis
{"title":"简单的部分恢复传感器数据输入方法研究","authors":"C. Sydora, Johannes Jung, I. Nikolaidis","doi":"10.23919/CNSM46954.2019.9012748","DOIUrl":null,"url":null,"abstract":"We consider the problem of loss of continuous data feeds from sensor networks, due to transient failures. Because the failures are recoverable, part of the missing data may be, eventually, acquired. Even then, the limited resources of the nodes can result in an incomplete reconstruction of the missing data. In this paper we study a set of proposed data imputation methods, and their variations, on a real data set. We determine the tradeoffs involved in the proposed techniques. A common characteristic of the studied techniques is that they depend on the recent behavior of the data stream and do not make specific assumptions about the long-term stochastic behavior of the data. We consider also the case where simple, sub-sampling based, handling of accumulated missing data is implemented by the nodes.","PeriodicalId":273818,"journal":{"name":"2019 15th International Conference on Network and Service Management (CNSM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study of Simple Partially-Recovered Sensor Data Imputation Methods\",\"authors\":\"C. Sydora, Johannes Jung, I. Nikolaidis\",\"doi\":\"10.23919/CNSM46954.2019.9012748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of loss of continuous data feeds from sensor networks, due to transient failures. Because the failures are recoverable, part of the missing data may be, eventually, acquired. Even then, the limited resources of the nodes can result in an incomplete reconstruction of the missing data. In this paper we study a set of proposed data imputation methods, and their variations, on a real data set. We determine the tradeoffs involved in the proposed techniques. A common characteristic of the studied techniques is that they depend on the recent behavior of the data stream and do not make specific assumptions about the long-term stochastic behavior of the data. We consider also the case where simple, sub-sampling based, handling of accumulated missing data is implemented by the nodes.\",\"PeriodicalId\":273818,\"journal\":{\"name\":\"2019 15th International Conference on Network and Service Management (CNSM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th International Conference on Network and Service Management (CNSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CNSM46954.2019.9012748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CNSM46954.2019.9012748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了由于瞬态故障而导致传感器网络连续数据馈送丢失的问题。由于故障是可恢复的,因此可能最终获得部分丢失的数据。即使这样,节点的有限资源也可能导致缺失数据的不完整重建。在本文中,我们研究了一组在实际数据集上提出的数据输入方法及其变化。我们确定了所建议的技术所涉及的权衡。所研究的技术的一个共同特点是,它们依赖于数据流的近期行为,而不对数据的长期随机行为做出具体假设。我们还考虑了这样一种情况,即节点对累积的缺失数据进行简单的、基于子采样的处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Study of Simple Partially-Recovered Sensor Data Imputation Methods
We consider the problem of loss of continuous data feeds from sensor networks, due to transient failures. Because the failures are recoverable, part of the missing data may be, eventually, acquired. Even then, the limited resources of the nodes can result in an incomplete reconstruction of the missing data. In this paper we study a set of proposed data imputation methods, and their variations, on a real data set. We determine the tradeoffs involved in the proposed techniques. A common characteristic of the studied techniques is that they depend on the recent behavior of the data stream and do not make specific assumptions about the long-term stochastic behavior of the data. We consider also the case where simple, sub-sampling based, handling of accumulated missing data is implemented by the nodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flow-based Throughput Prediction using Deep Learning and Real-World Network Traffic Learning From Evolving Network Data for Dependable Botnet Detection Exploring NAT Detection and Host Identification Using Machine Learning Lumped Markovian Estimation for Wi-Fi Channel Utilization Prediction An Access Control Implementation Targeting Resource-constrained Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1