基于遗传算法的移动机器人在未知动态环境中移动障碍物导航

Sua Tan, Anmin Zhu, Simon X. Yang
{"title":"基于遗传算法的移动机器人在未知动态环境中移动障碍物导航","authors":"Sua Tan, Anmin Zhu, Simon X. Yang","doi":"10.1109/GRC.2009.5255067","DOIUrl":null,"url":null,"abstract":"A genetic algorithm (GA)-based fuzzy-interference control system with an accelerate/brake (A/B) module is developed for a mobile robot in unknown environments with moving obstacles. The A/B module of the proposed system is to enable the mobile robot to make human-like decisions as it moves toward a target. Under the control of the proposed fuzzy inference model, the robot can perform well in avoiding both static and moving obstacles, like human beings, along a reasonable short path. In addition, a GA module is employed to tune the membership functions, which improves the performance of the fuzzy-inference system. The GA is an effective auto-tuning technique in optimizing systems without suffering from local minima. The effectiveness of the proposed approach is demonstrated by simulation studies.","PeriodicalId":388774,"journal":{"name":"2009 IEEE International Conference on Granular Computing","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A GA-based fuzzy logic approach to mobile robot navigation in unknown dynamic environments with moving obstacles\",\"authors\":\"Sua Tan, Anmin Zhu, Simon X. Yang\",\"doi\":\"10.1109/GRC.2009.5255067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A genetic algorithm (GA)-based fuzzy-interference control system with an accelerate/brake (A/B) module is developed for a mobile robot in unknown environments with moving obstacles. The A/B module of the proposed system is to enable the mobile robot to make human-like decisions as it moves toward a target. Under the control of the proposed fuzzy inference model, the robot can perform well in avoiding both static and moving obstacles, like human beings, along a reasonable short path. In addition, a GA module is employed to tune the membership functions, which improves the performance of the fuzzy-inference system. The GA is an effective auto-tuning technique in optimizing systems without suffering from local minima. The effectiveness of the proposed approach is demonstrated by simulation studies.\",\"PeriodicalId\":388774,\"journal\":{\"name\":\"2009 IEEE International Conference on Granular Computing\",\"volume\":\"156 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Granular Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GRC.2009.5255067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2009.5255067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对具有移动障碍物的未知环境下的移动机器人,开发了一种基于遗传算法的带加速/制动(A/B)模块模糊干扰控制系统。该系统的A/B模块是为了使移动机器人在向目标移动时能够做出类似人类的决定。在所提出的模糊推理模型的控制下,机器人可以像人类一样,沿着合理的短路径,很好地避开静态和移动障碍物。此外,采用遗传算法对隶属函数进行调整,提高了模糊推理系统的性能。遗传算法是一种有效的不受局部极小值影响的系统优化自整定技术。仿真研究证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A GA-based fuzzy logic approach to mobile robot navigation in unknown dynamic environments with moving obstacles
A genetic algorithm (GA)-based fuzzy-interference control system with an accelerate/brake (A/B) module is developed for a mobile robot in unknown environments with moving obstacles. The A/B module of the proposed system is to enable the mobile robot to make human-like decisions as it moves toward a target. Under the control of the proposed fuzzy inference model, the robot can perform well in avoiding both static and moving obstacles, like human beings, along a reasonable short path. In addition, a GA module is employed to tune the membership functions, which improves the performance of the fuzzy-inference system. The GA is an effective auto-tuning technique in optimizing systems without suffering from local minima. The effectiveness of the proposed approach is demonstrated by simulation studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On SP-closedness in L-topological spaces A comprehensive evaluation method based on extenics and rough set A two-step approach for solving the flexible job shop scheduling problem A fast and accurate collaborative filter Attribute Grid Computer based on Qualitative Mapping and its application in pattern Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1