基于辅助原理问题算法的分布式多周期DCOPF

Mohannad Alkhraijah, Maad Alowaifeer, S. Grijalva, D. Molzahn
{"title":"基于辅助原理问题算法的分布式多周期DCOPF","authors":"Mohannad Alkhraijah, Maad Alowaifeer, S. Grijalva, D. Molzahn","doi":"10.1109/TPEC51183.2021.9384964","DOIUrl":null,"url":null,"abstract":"Distributed algorithms provide attractive features for solving Optimal Power Flow (OPF) problems in interconnected power systems compared to traditional centralized algorithms. Distributed algorithms help to maintain the control autonomy and data privacy of subsystems, which is particularly relevant in competitive markets and practical control system implementations. This paper analyzes a distributed optimization algorithm known as the “Auxiliary Principle Problem” to solve multiperiod distributed DCOPF problems with distributed energy resources including energy storage systems. The proposed approach enables multiple interconnected systems with their own sub-objectives to share their resources and to participate in an electricity market without implicitly sharing information about their local generators or internal network parameters. The paper also shows how the proposed approach can enable future microgrids to coordinate their operation, reduce the total operational cost, and avoid internal constraint violations caused by unscheduled flows (USF) while maintaining the subsystems' autonomy. We use an 11-bus test system consisting of two interconnected subsystems to evaluate the proposed approach and analyze the impact of USF.","PeriodicalId":354018,"journal":{"name":"2021 IEEE Texas Power and Energy Conference (TPEC)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Distributed Multi-Period DCOPF via an Auxiliary Principle Problem Algorithm\",\"authors\":\"Mohannad Alkhraijah, Maad Alowaifeer, S. Grijalva, D. Molzahn\",\"doi\":\"10.1109/TPEC51183.2021.9384964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed algorithms provide attractive features for solving Optimal Power Flow (OPF) problems in interconnected power systems compared to traditional centralized algorithms. Distributed algorithms help to maintain the control autonomy and data privacy of subsystems, which is particularly relevant in competitive markets and practical control system implementations. This paper analyzes a distributed optimization algorithm known as the “Auxiliary Principle Problem” to solve multiperiod distributed DCOPF problems with distributed energy resources including energy storage systems. The proposed approach enables multiple interconnected systems with their own sub-objectives to share their resources and to participate in an electricity market without implicitly sharing information about their local generators or internal network parameters. The paper also shows how the proposed approach can enable future microgrids to coordinate their operation, reduce the total operational cost, and avoid internal constraint violations caused by unscheduled flows (USF) while maintaining the subsystems' autonomy. We use an 11-bus test system consisting of two interconnected subsystems to evaluate the proposed approach and analyze the impact of USF.\",\"PeriodicalId\":354018,\"journal\":{\"name\":\"2021 IEEE Texas Power and Energy Conference (TPEC)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Texas Power and Energy Conference (TPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPEC51183.2021.9384964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Texas Power and Energy Conference (TPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPEC51183.2021.9384964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

与传统的集中式算法相比,分布式算法为解决互联电力系统中的最优潮流问题提供了有吸引力的特点。分布式算法有助于保持子系统的控制自主性和数据隐私性,这在竞争市场和实际控制系统实现中尤为重要。本文分析了一种分布式优化算法“辅助原理问题”,用于解决包括储能系统在内的分布式能源的多周期分布式DCOPF问题。所提出的方法使具有各自子目标的多个互连系统能够共享资源并参与电力市场,而不会隐含地共享有关其本地发电机或内部网络参数的信息。本文还展示了所提出的方法如何使未来的微电网能够协调其运行,降低总运行成本,并避免由非计划流量(USF)引起的内部约束违规,同时保持子系统的自主性。我们使用由两个相互连接的子系统组成的11总线测试系统来评估所提出的方法并分析USF的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed Multi-Period DCOPF via an Auxiliary Principle Problem Algorithm
Distributed algorithms provide attractive features for solving Optimal Power Flow (OPF) problems in interconnected power systems compared to traditional centralized algorithms. Distributed algorithms help to maintain the control autonomy and data privacy of subsystems, which is particularly relevant in competitive markets and practical control system implementations. This paper analyzes a distributed optimization algorithm known as the “Auxiliary Principle Problem” to solve multiperiod distributed DCOPF problems with distributed energy resources including energy storage systems. The proposed approach enables multiple interconnected systems with their own sub-objectives to share their resources and to participate in an electricity market without implicitly sharing information about their local generators or internal network parameters. The paper also shows how the proposed approach can enable future microgrids to coordinate their operation, reduce the total operational cost, and avoid internal constraint violations caused by unscheduled flows (USF) while maintaining the subsystems' autonomy. We use an 11-bus test system consisting of two interconnected subsystems to evaluate the proposed approach and analyze the impact of USF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Development of a Portable High Voltage Variable Pulsed Power Source using Flyback Converter and Rotary Spark Gap from a 12V Battery Outdoor Performance of crystalline silicon PV modules in Bogotá - Colombia Improved Dual Switch Non-Isolated High Gain Boost Converter for DC microgrid Application [Copyright notice] Selective Harmonic Elimination PWM for Cascaded H-bridge Multilevel Inverter with Wide Output Voltage Range Using PSO Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1