模拟生成的TORCS控制器

Jorge Muñoz, G. Gutiérrez, A. Sanchis
{"title":"模拟生成的TORCS控制器","authors":"Jorge Muñoz, G. Gutiérrez, A. Sanchis","doi":"10.1109/CIG.2009.5286464","DOIUrl":null,"url":null,"abstract":"This paper is an initial approach to create a controller for the game TORCS by learning how another controller or humans play the game. We used data obtained from two controllers and from one human player. The first controller is the winner of the WCCI 2008 Simulated Car Racing Competition, and the second one is a hand coded controller that performs a complete lap in all tracks. First, each kind of controller is imitated separately, then a mix of the data is used to create new controllers. The imitation is performed by means of training a feed forward neural network with the data, using the backpropagation algorithm for learning.","PeriodicalId":358795,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence and Games","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Controller for TORCS created by imitation\",\"authors\":\"Jorge Muñoz, G. Gutiérrez, A. Sanchis\",\"doi\":\"10.1109/CIG.2009.5286464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is an initial approach to create a controller for the game TORCS by learning how another controller or humans play the game. We used data obtained from two controllers and from one human player. The first controller is the winner of the WCCI 2008 Simulated Car Racing Competition, and the second one is a hand coded controller that performs a complete lap in all tracks. First, each kind of controller is imitated separately, then a mix of the data is used to create new controllers. The imitation is performed by means of training a feed forward neural network with the data, using the backpropagation algorithm for learning.\",\"PeriodicalId\":358795,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence and Games\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2009.5286464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2009.5286464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

本文是通过学习其他控制器或人类如何玩游戏来为游戏TORCS创建控制器的初步方法。我们使用了来自两个控制器和一个人类玩家的数据。第一个控制器是WCCI 2008模拟赛车比赛的获胜者,第二个是一个手动编码的控制器,可以在所有赛道上完成一圈。首先,分别模拟每种类型的控制器,然后使用混合数据来创建新的控制器。模拟的方法是利用数据训练前馈神经网络,并使用反向传播算法进行学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Controller for TORCS created by imitation
This paper is an initial approach to create a controller for the game TORCS by learning how another controller or humans play the game. We used data obtained from two controllers and from one human player. The first controller is the winner of the WCCI 2008 Simulated Car Racing Competition, and the second one is a hand coded controller that performs a complete lap in all tracks. First, each kind of controller is imitated separately, then a mix of the data is used to create new controllers. The imitation is performed by means of training a feed forward neural network with the data, using the backpropagation algorithm for learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal strategy selection of non-player character on real time strategy game using a speciated evolutionary algorithm Formal analysis and algorithms for extracting coordinate systems of games Evolving driving controllers using Genetic Programming CHANCEPROBCUT: Forward pruning in chance nodes Evolving coordinated spatial tactics for autonomous entities using influence maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1