采用气-液-固两步温度模式研究Ge衬底表面态和Au催化剂层厚度对不同geexoy纳米材料生长和纳米晶体构型的影响

Khac An Dao, H. T. Pham, V. V. Hoang
{"title":"采用气-液-固两步温度模式研究Ge衬底表面态和Au催化剂层厚度对不同geexoy纳米材料生长和纳米晶体构型的影响","authors":"Khac An Dao, H. T. Pham, V. V. Hoang","doi":"10.21926/cr.2301006","DOIUrl":null,"url":null,"abstract":"Recently the GexOy nanomaterials have been studied intensively due to their interesting electronic materials, which have many particular properties and applications in nanotechnology and nano-devices fabrication. Much work has been done on many different synthesis methods and their properties of Ge and GexOy nanomaterials. However, the effects of the different Ge substrate surface states and Au catalyst layer thicknesses on the formation of different forms/morphologies of nanomaterials (nanowires, nanorods, nanoparticles, and nanocrystals particularly) have yet to be discussed more in detail. This paper outlines the synthesis methods to grow the different GexOy nanomaterials on the different Ge surface states at different Au catalyst layer thicknesses such as mechanically polished surface, deep Chemical etched surface, chemical polishing surface, and initial rough surface. The morphological, and structural properties of GexOy nanomaterials have been investigated using SEM, EDX, and TEM techniques. The formation of different morphological, and structural properties of different GexOy nanomaterials grown have been explained by the effects of the Au/Ge/O droplets/clusters formation situations and surface defects on the Ge substrate surface caused. The growth mechanisms have been explained by the model of the VLS growth method with the Oxide Assist Growth mechanism. The results showed that the effects of the different Ge substrate surface states and Au catalyst layers’ thickness strongly influence the formation of GexOy materials in terms of the sizes, structures, and percentages of elements. The results of the controllable different GexOy nanomaterials have many significant meanings for both theoretical and practical applications in nanomaterials and nano-device fabrication.","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effects of Ge Substrate Surface States and Au Catalyst Layer Thickness on the Growth of Different GexOy Nanomaterials and Nanocrystals Configurations Using Vapor-Liquid-Solid Method with two Steps Temperature Mode\",\"authors\":\"Khac An Dao, H. T. Pham, V. V. Hoang\",\"doi\":\"10.21926/cr.2301006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently the GexOy nanomaterials have been studied intensively due to their interesting electronic materials, which have many particular properties and applications in nanotechnology and nano-devices fabrication. Much work has been done on many different synthesis methods and their properties of Ge and GexOy nanomaterials. However, the effects of the different Ge substrate surface states and Au catalyst layer thicknesses on the formation of different forms/morphologies of nanomaterials (nanowires, nanorods, nanoparticles, and nanocrystals particularly) have yet to be discussed more in detail. This paper outlines the synthesis methods to grow the different GexOy nanomaterials on the different Ge surface states at different Au catalyst layer thicknesses such as mechanically polished surface, deep Chemical etched surface, chemical polishing surface, and initial rough surface. The morphological, and structural properties of GexOy nanomaterials have been investigated using SEM, EDX, and TEM techniques. The formation of different morphological, and structural properties of different GexOy nanomaterials grown have been explained by the effects of the Au/Ge/O droplets/clusters formation situations and surface defects on the Ge substrate surface caused. The growth mechanisms have been explained by the model of the VLS growth method with the Oxide Assist Growth mechanism. The results showed that the effects of the different Ge substrate surface states and Au catalyst layers’ thickness strongly influence the formation of GexOy materials in terms of the sizes, structures, and percentages of elements. The results of the controllable different GexOy nanomaterials have many significant meanings for both theoretical and practical applications in nanomaterials and nano-device fabrication.\",\"PeriodicalId\":178524,\"journal\":{\"name\":\"Catalysis Research\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/cr.2301006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/cr.2301006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,geexoy纳米材料作为一种有趣的电子材料,在纳米技术和纳米器件制造中具有许多独特的性能和应用,受到了广泛的研究。人们对锗和geexoy纳米材料的不同合成方法及其性能进行了大量的研究。然而,不同的Ge衬底表面状态和Au催化剂层厚度对不同形式/形态的纳米材料(特别是纳米线、纳米棒、纳米颗粒和纳米晶体)形成的影响尚未得到更详细的讨论。本文概述了在不同Au催化剂层厚度的不同Ge表面状态(机械抛光表面、深化学蚀刻表面、化学抛光表面和初始粗糙表面)上生长不同GexOy纳米材料的合成方法。利用SEM、EDX和TEM技术研究了geexoy纳米材料的形态和结构特性。通过Au/Ge/O液滴/团簇的形成情况和在Ge衬底表面引起的表面缺陷的影响,解释了不同生长的geexoy纳米材料的不同形态和结构性能的形成。用氧化辅助生长机理的VLS生长方法模型解释了其生长机理。结果表明,不同的Ge衬底表面状态和Au催化剂层厚度对geexoy材料的形成在尺寸、结构和元素百分比方面有很大的影响。研究结果对纳米材料和纳米器件制造具有重要的理论和实际应用意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effects of Ge Substrate Surface States and Au Catalyst Layer Thickness on the Growth of Different GexOy Nanomaterials and Nanocrystals Configurations Using Vapor-Liquid-Solid Method with two Steps Temperature Mode
Recently the GexOy nanomaterials have been studied intensively due to their interesting electronic materials, which have many particular properties and applications in nanotechnology and nano-devices fabrication. Much work has been done on many different synthesis methods and their properties of Ge and GexOy nanomaterials. However, the effects of the different Ge substrate surface states and Au catalyst layer thicknesses on the formation of different forms/morphologies of nanomaterials (nanowires, nanorods, nanoparticles, and nanocrystals particularly) have yet to be discussed more in detail. This paper outlines the synthesis methods to grow the different GexOy nanomaterials on the different Ge surface states at different Au catalyst layer thicknesses such as mechanically polished surface, deep Chemical etched surface, chemical polishing surface, and initial rough surface. The morphological, and structural properties of GexOy nanomaterials have been investigated using SEM, EDX, and TEM techniques. The formation of different morphological, and structural properties of different GexOy nanomaterials grown have been explained by the effects of the Au/Ge/O droplets/clusters formation situations and surface defects on the Ge substrate surface caused. The growth mechanisms have been explained by the model of the VLS growth method with the Oxide Assist Growth mechanism. The results showed that the effects of the different Ge substrate surface states and Au catalyst layers’ thickness strongly influence the formation of GexOy materials in terms of the sizes, structures, and percentages of elements. The results of the controllable different GexOy nanomaterials have many significant meanings for both theoretical and practical applications in nanomaterials and nano-device fabrication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effective Photogeneration of Singlet Oxygen and High Photocatalytic and Antibacterial Activities of Porous Mn-Doped ZnO-ZrO2 Nanocomposites Determination of Reflectance Spectra and Colorimetry of Titanium and Tungsten Oxides Obtained by Microwave-assisted Hydrothermal Synthesis A Remarkable Pt Doped CNT Catalyst as a Double Functional Material: Its Application for Hydrogen Production and Supercapacitor NaY Zeolite Synthesis from Vermiculite and Modification with Surfactant Synthesis of SAPO-34 Zeolite Membrane: Influence of Sources of Silica
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1