用于物理治疗仪器的基于运动的游戏外设的管理系统

Benjamin Bockstege, A. Striegel
{"title":"用于物理治疗仪器的基于运动的游戏外设的管理系统","authors":"Benjamin Bockstege, A. Striegel","doi":"10.1109/HealthCom.2014.7001838","DOIUrl":null,"url":null,"abstract":"The rise in motion-based gaming peripherals has afforded intriguing opportunities for low-cost instrumentation of health-oriented activities. One particular activity, that of physical therapy, is of considerable interest as traditional systems in the area cost on the order of tens of thousands of dollars. However, while recent research has shown that gaming peripherals can deliver high quality instrumentation, non-expert programmers face considerable challenges in delivering robust and accurate instrumentation outside of the lab environment. Furthermore, when one considers how to fuse data across multiple peripherals, the heterogeneity of peripheral performance significantly complicates recording useful data. To that end, this paper seeks to describe our approach for delivering a robust, accurate, and scalable framework for motion-based gaming peripherals, specifically targeted at physical therapy in the clinical and research settings. We describe the principles of our framework and composition of data flow through a variety of illustrative examples. Finally, we conclude with several experimental setups designed to demonstrate the efficacy of the framework drawn directly from our experience in live clinical settings.","PeriodicalId":269964,"journal":{"name":"2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A management system for motion-based gaming peripherals for physical therapy instrumentation\",\"authors\":\"Benjamin Bockstege, A. Striegel\",\"doi\":\"10.1109/HealthCom.2014.7001838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rise in motion-based gaming peripherals has afforded intriguing opportunities for low-cost instrumentation of health-oriented activities. One particular activity, that of physical therapy, is of considerable interest as traditional systems in the area cost on the order of tens of thousands of dollars. However, while recent research has shown that gaming peripherals can deliver high quality instrumentation, non-expert programmers face considerable challenges in delivering robust and accurate instrumentation outside of the lab environment. Furthermore, when one considers how to fuse data across multiple peripherals, the heterogeneity of peripheral performance significantly complicates recording useful data. To that end, this paper seeks to describe our approach for delivering a robust, accurate, and scalable framework for motion-based gaming peripherals, specifically targeted at physical therapy in the clinical and research settings. We describe the principles of our framework and composition of data flow through a variety of illustrative examples. Finally, we conclude with several experimental setups designed to demonstrate the efficacy of the framework drawn directly from our experience in live clinical settings.\",\"PeriodicalId\":269964,\"journal\":{\"name\":\"2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HealthCom.2014.7001838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HealthCom.2014.7001838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于动作的游戏外围设备的兴起为低成本的健康活动仪器仪表提供了有趣的机会。一项特殊的活动,即物理治疗,引起了相当大的兴趣,因为该地区的传统系统成本约为数万美元。然而,尽管最近的研究表明,游戏外围设备可以提供高质量的仪器,但非专业程序员在提供实验室环境之外的可靠和准确的仪器方面面临着相当大的挑战。此外,当考虑如何跨多个外设融合数据时,外设性能的异质性使记录有用数据变得非常复杂。为此,本文试图描述我们为基于动作的游戏外设提供稳健、准确和可扩展框架的方法,特别是针对临床和研究环境中的物理治疗。我们通过各种说明性示例描述了我们的框架的原理和数据流的组成。最后,我们总结了几个实验设置,旨在证明该框架的有效性,这些框架直接来自我们在现场临床环境中的经验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A management system for motion-based gaming peripherals for physical therapy instrumentation
The rise in motion-based gaming peripherals has afforded intriguing opportunities for low-cost instrumentation of health-oriented activities. One particular activity, that of physical therapy, is of considerable interest as traditional systems in the area cost on the order of tens of thousands of dollars. However, while recent research has shown that gaming peripherals can deliver high quality instrumentation, non-expert programmers face considerable challenges in delivering robust and accurate instrumentation outside of the lab environment. Furthermore, when one considers how to fuse data across multiple peripherals, the heterogeneity of peripheral performance significantly complicates recording useful data. To that end, this paper seeks to describe our approach for delivering a robust, accurate, and scalable framework for motion-based gaming peripherals, specifically targeted at physical therapy in the clinical and research settings. We describe the principles of our framework and composition of data flow through a variety of illustrative examples. Finally, we conclude with several experimental setups designed to demonstrate the efficacy of the framework drawn directly from our experience in live clinical settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using online social media platforms for ubiquitous, personal health monitoring Standard-based and distributed health information sharing for mHealth IoT systems Towards health exercise behavior change for teams using life-logging An integrated approach of diet and exercise recommendations for diabetes patients Low complex, programmable FPGA based 8-channel ultrasound transmitter for medical imaging researches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1