基于潜在狄利克雷分配的步态序列分析

A. DeepakN., R. Hariharan, U. Sinha
{"title":"基于潜在狄利克雷分配的步态序列分析","authors":"A. DeepakN., R. Hariharan, U. Sinha","doi":"10.1109/NCVPRIPG.2013.6776173","DOIUrl":null,"url":null,"abstract":"Conventional human action recognition algorithm and method generate coarse clusters of input videos approximately 2-4 clusters with less information regarding the cluster generation. This problem is solved by proposing Latent Dirichlet Allocation algorithm that transforms the extracted gait sequences in gait domain into documents-words in text domain. These words are then used to group the input documents into finer clusters approximately 8-9 clusters. In this approach, we have made an attempt to use gait analysis in recognizing human actions, where the gait analysis requires to have some motion in lower parts of the human body like leg. As the videos of Weizmann dataset have some actions that exhibits these movements, we are able use these motion parameters to recognize certain human actions. Experiments on Weizmann dataset suggest that the proposed Latent Dirichlet Allocation algorithm is an efficient method for recognizing human actions from the video streams.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysing gait sequences using Latent Dirichlet Allocation for certain human actions\",\"authors\":\"A. DeepakN., R. Hariharan, U. Sinha\",\"doi\":\"10.1109/NCVPRIPG.2013.6776173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional human action recognition algorithm and method generate coarse clusters of input videos approximately 2-4 clusters with less information regarding the cluster generation. This problem is solved by proposing Latent Dirichlet Allocation algorithm that transforms the extracted gait sequences in gait domain into documents-words in text domain. These words are then used to group the input documents into finer clusters approximately 8-9 clusters. In this approach, we have made an attempt to use gait analysis in recognizing human actions, where the gait analysis requires to have some motion in lower parts of the human body like leg. As the videos of Weizmann dataset have some actions that exhibits these movements, we are able use these motion parameters to recognize certain human actions. Experiments on Weizmann dataset suggest that the proposed Latent Dirichlet Allocation algorithm is an efficient method for recognizing human actions from the video streams.\",\"PeriodicalId\":436402,\"journal\":{\"name\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCVPRIPG.2013.6776173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

传统的人体动作识别算法和方法产生的输入视频的粗聚类大约为2-4个聚类,关于聚类生成的信息较少。提出了隐狄利克雷分配算法,将提取的步态序列在步态域转化为文本域的文档-词。然后使用这些单词将输入文档分组为更精细的集群,大约为8-9个集群。在这种方法中,我们尝试使用步态分析来识别人类的动作,其中步态分析需要在人体的下部如腿部有一些运动。由于Weizmann数据集的视频中有一些动作展示了这些动作,我们可以使用这些动作参数来识别某些人类动作。在Weizmann数据集上的实验表明,所提出的潜在狄利克雷分配算法是一种从视频流中识别人类行为的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysing gait sequences using Latent Dirichlet Allocation for certain human actions
Conventional human action recognition algorithm and method generate coarse clusters of input videos approximately 2-4 clusters with less information regarding the cluster generation. This problem is solved by proposing Latent Dirichlet Allocation algorithm that transforms the extracted gait sequences in gait domain into documents-words in text domain. These words are then used to group the input documents into finer clusters approximately 8-9 clusters. In this approach, we have made an attempt to use gait analysis in recognizing human actions, where the gait analysis requires to have some motion in lower parts of the human body like leg. As the videos of Weizmann dataset have some actions that exhibits these movements, we are able use these motion parameters to recognize certain human actions. Experiments on Weizmann dataset suggest that the proposed Latent Dirichlet Allocation algorithm is an efficient method for recognizing human actions from the video streams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring in super-resolution framework Surface fitting in SPECT imaging useful for detecting Parkinson's Disease and Scans Without Evidence of Dopaminergic Deficit Automatic number plate recognition system using modified stroke width transform UKF based multi-component phase estimation in digital holographic Moiré Feature preserving anisotropic diffusion for image restoration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1