CMINet:面向内容感知的多通道影响扩散的图学习框架

Hsi-Wen Chen, De-Nian Yang, Wang-Chien Lee, P. Yu, Ming-Syan Chen
{"title":"CMINet:面向内容感知的多通道影响扩散的图学习框架","authors":"Hsi-Wen Chen, De-Nian Yang, Wang-Chien Lee, P. Yu, Ming-Syan Chen","doi":"10.1145/3543507.3583465","DOIUrl":null,"url":null,"abstract":"The phenomena of influence diffusion on social networks have received tremendous research interests in the past decade. While most prior works mainly focus on predicting the total influence spread on a single network, a marketing campaign that exploits influence diffusion often involves multiple channels with various information disseminated on different media. In this paper, we introduce a new influence estimation problem, namely Content-aware Multi-channel Influence Diffusion (CMID), and accordingly propose CMINet to predict newly influenced users, given a set of seed users with different multimedia contents. In CMINet, we first introduce DiffGNN to encode the influencing power of users (nodes) and Influence-aware Optimal Transport (IOT) to align the embeddings to address the distribution shift across different diffusion channels. Then, we transform CMID into a node classification problem and propose Social-based Multimedia Feature Extractor (SMFE) and Content-aware Multi-channel Influence Propagation (CMIP) to jointly learn the user preferences on multimedia contents and predict the susceptibility of users. Furthermore, we prove that CMINet preserves monotonicity and submodularity, thus enabling (1 − 1/e)-approximate solutions for influence maximization. Experimental results manifest that CMINet outperforms eleven baselines on three public datasets.","PeriodicalId":296351,"journal":{"name":"Proceedings of the ACM Web Conference 2023","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CMINet: a Graph Learning Framework for Content-aware Multi-channel Influence Diffusion\",\"authors\":\"Hsi-Wen Chen, De-Nian Yang, Wang-Chien Lee, P. Yu, Ming-Syan Chen\",\"doi\":\"10.1145/3543507.3583465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The phenomena of influence diffusion on social networks have received tremendous research interests in the past decade. While most prior works mainly focus on predicting the total influence spread on a single network, a marketing campaign that exploits influence diffusion often involves multiple channels with various information disseminated on different media. In this paper, we introduce a new influence estimation problem, namely Content-aware Multi-channel Influence Diffusion (CMID), and accordingly propose CMINet to predict newly influenced users, given a set of seed users with different multimedia contents. In CMINet, we first introduce DiffGNN to encode the influencing power of users (nodes) and Influence-aware Optimal Transport (IOT) to align the embeddings to address the distribution shift across different diffusion channels. Then, we transform CMID into a node classification problem and propose Social-based Multimedia Feature Extractor (SMFE) and Content-aware Multi-channel Influence Propagation (CMIP) to jointly learn the user preferences on multimedia contents and predict the susceptibility of users. Furthermore, we prove that CMINet preserves monotonicity and submodularity, thus enabling (1 − 1/e)-approximate solutions for influence maximization. Experimental results manifest that CMINet outperforms eleven baselines on three public datasets.\",\"PeriodicalId\":296351,\"journal\":{\"name\":\"Proceedings of the ACM Web Conference 2023\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Web Conference 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3543507.3583465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Web Conference 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3543507.3583465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近十年来,社会网络上的影响扩散现象引起了人们极大的研究兴趣。以往的大部分工作主要集中在预测单个网络的总影响力传播,而利用影响力传播的营销活动往往涉及多个渠道,在不同的媒体上传播各种信息。本文引入了一个新的影响估计问题,即内容感知的多通道影响扩散(CMID),并在给定一组具有不同多媒体内容的种子用户的情况下,提出了CMINet来预测新影响用户。在CMINet中,我们首先引入DiffGNN对用户(节点)的影响力进行编码,并引入影响感知的最优传输(IOT)来对齐嵌入,以解决不同扩散通道之间的分布转移。然后,将CMID转化为节点分类问题,提出基于社交的多媒体特征提取器(SMFE)和内容感知多通道影响传播(CMIP),共同学习用户对多媒体内容的偏好,预测用户的敏感性。此外,我们证明了CMINet保持单调性和子模块化,从而实现(1−1/e)-近似解的影响最大化。实验结果表明,CMINet在三个公共数据集上优于11个基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CMINet: a Graph Learning Framework for Content-aware Multi-channel Influence Diffusion
The phenomena of influence diffusion on social networks have received tremendous research interests in the past decade. While most prior works mainly focus on predicting the total influence spread on a single network, a marketing campaign that exploits influence diffusion often involves multiple channels with various information disseminated on different media. In this paper, we introduce a new influence estimation problem, namely Content-aware Multi-channel Influence Diffusion (CMID), and accordingly propose CMINet to predict newly influenced users, given a set of seed users with different multimedia contents. In CMINet, we first introduce DiffGNN to encode the influencing power of users (nodes) and Influence-aware Optimal Transport (IOT) to align the embeddings to address the distribution shift across different diffusion channels. Then, we transform CMID into a node classification problem and propose Social-based Multimedia Feature Extractor (SMFE) and Content-aware Multi-channel Influence Propagation (CMIP) to jointly learn the user preferences on multimedia contents and predict the susceptibility of users. Furthermore, we prove that CMINet preserves monotonicity and submodularity, thus enabling (1 − 1/e)-approximate solutions for influence maximization. Experimental results manifest that CMINet outperforms eleven baselines on three public datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CurvDrop: A Ricci Curvature Based Approach to Prevent Graph Neural Networks from Over-Smoothing and Over-Squashing Learning to Simulate Crowd Trajectories with Graph Networks Word Sense Disambiguation by Refining Target Word Embedding Curriculum Graph Poisoning Optimizing Guided Traversal for Fast Learned Sparse Retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1