{"title":"基于局部特征的递归神经网络在线模式检测","authors":"S. Otte, D. Krechel, M. Liwicki, A. Dengel","doi":"10.1109/ICFHR.2012.229","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel approach for online mode detection, where the task is to classify ink traces into several categories. In contrast to previous approaches working on global features, we introduce a system completely relying on local features. For classification, standard recurrent neural networks (RNNs) and the recently introduced long short-term memory (LSTM) networks are used. Experiments are performed on the publicly available IAMonDo-database which serves as a benchmark data set for several researches. In the experiments we investigate several RNN structures and classification sub-tasks of different complexities. The final recognition rate on the complete test set is 98.47% in average, which is significantly higher than the 97% achieved with an MCS in previous work. Further interesting results on different subsets are also reported in this paper.","PeriodicalId":291062,"journal":{"name":"2012 International Conference on Frontiers in Handwriting Recognition","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Local Feature Based Online Mode Detection with Recurrent Neural Networks\",\"authors\":\"S. Otte, D. Krechel, M. Liwicki, A. Dengel\",\"doi\":\"10.1109/ICFHR.2012.229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a novel approach for online mode detection, where the task is to classify ink traces into several categories. In contrast to previous approaches working on global features, we introduce a system completely relying on local features. For classification, standard recurrent neural networks (RNNs) and the recently introduced long short-term memory (LSTM) networks are used. Experiments are performed on the publicly available IAMonDo-database which serves as a benchmark data set for several researches. In the experiments we investigate several RNN structures and classification sub-tasks of different complexities. The final recognition rate on the complete test set is 98.47% in average, which is significantly higher than the 97% achieved with an MCS in previous work. Further interesting results on different subsets are also reported in this paper.\",\"PeriodicalId\":291062,\"journal\":{\"name\":\"2012 International Conference on Frontiers in Handwriting Recognition\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFHR.2012.229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2012.229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Local Feature Based Online Mode Detection with Recurrent Neural Networks
In this paper we propose a novel approach for online mode detection, where the task is to classify ink traces into several categories. In contrast to previous approaches working on global features, we introduce a system completely relying on local features. For classification, standard recurrent neural networks (RNNs) and the recently introduced long short-term memory (LSTM) networks are used. Experiments are performed on the publicly available IAMonDo-database which serves as a benchmark data set for several researches. In the experiments we investigate several RNN structures and classification sub-tasks of different complexities. The final recognition rate on the complete test set is 98.47% in average, which is significantly higher than the 97% achieved with an MCS in previous work. Further interesting results on different subsets are also reported in this paper.